1
|
Bernabei L, Leone B, Hirsch D, Mentuccia V, Panzera A, Riggio F, Sangiovanni L, Piserchia V, Nicolò G, Pompili E. Neuromodulation Strategies in Lifelong Bipolar Disorder: A Narrative Review. Behav Sci (Basel) 2024; 14:1176. [PMID: 39767317 PMCID: PMC11674029 DOI: 10.3390/bs14121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition characterized by recurrent episodes of mania and depression, affecting millions worldwide. While pharmacotherapy remains the cornerstone of treatment, a significant proportion of patients exhibit inadequate response or intolerable side effects to conventional medications. In recent years, neuromodulation techniques have emerged as promising adjunctive or alternative treatments for bipolar disorder. We performed a narrative review, according to the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, to provide a comprehensive overview of the current literature on neuromodulation interventions in bipolar disorder across the course of lifespan. Specifically, it examines the efficacy, safety, and mechanisms of action of various neuromodulation strategies, including, among others, transcranial magnetic stimulation (TMS), electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), deep brain stimulation (DBS), and it describes the therapeutic experiences across the different ages of illness. Additionally, this review discusses the clinical implications, challenges, and future directions of the integration, in clinical practice, of neuromodulation into the management of bipolar disorder. By synthesizing evidence from different studies, this review aims to inform clinicians, researchers, and stakeholders about the evolving landscape of neuromodulation treatments and their potential role in improving outcomes for individuals with bipolar disorder.
Collapse
Affiliation(s)
- Laura Bernabei
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazza Aldo Moro, 100165 Rome, Italy;
| | - Beniamino Leone
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Daniele Hirsch
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Valentina Mentuccia
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Alessia Panzera
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Francesco Riggio
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Tivoli, 00019 Rome, Italy;
| | - Loredana Sangiovanni
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Valentina Piserchia
- Department of Mental Health and Addiction, Centre of Mental Health—ASL Rome 5, Colleferro, 00034 Rome, Italy;
| | - Giuseppe Nicolò
- Department of Mental Health and Addiction, Psychiatric Service of Diagnosis and Care—ASL Rome 5, Colleferro, 00034 Rome, Italy; (B.L.); (D.H.); (V.M.); (A.P.); (L.S.); (G.N.)
| | - Enrico Pompili
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazza Aldo Moro, 100165 Rome, Italy;
- Department of Mental Health and Addiction, Centre of Mental Health—ASL Rome 5, Colleferro, 00034 Rome, Italy;
| |
Collapse
|
2
|
Dawit H, Zhao Y, Wang J, Pei R. Advances in conductive hydrogels for neural recording and stimulation. Biomater Sci 2024; 12:2786-2800. [PMID: 38682423 DOI: 10.1039/d4bm00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The brain-computer interface (BCI) allows the human or animal brain to directly interact with the external environment through the neural interfaces, thus playing the role of monitoring, protecting, improving/restoring, enhancing, and replacing. Recording electrophysiological information such as brain neural signals is of great importance in health monitoring and disease diagnosis. According to the electrode position, it can be divided into non-implantable, semi-implantable, and implantable. Among them, implantable neural electrodes can obtain the highest-quality electrophysiological information, so they have the most promising application. However, due to the chemo-mechanical mismatch between devices and tissues, the adverse foreign body response and performance loss over time seriously restrict the development and application of implantable neural electrodes. Given the challenges, conductive hydrogel-based neural electrodes have recently attracted much attention, owing to many advantages such as good mechanical match with the native tissues, negligible foreign body response, and minimal signal attenuation. This review mainly focuses on the current development of conductive hydrogels as a biocompatible framework for neural tissue and conductivity-supporting substrates for the transmission of electrical signals of neural tissue to speed up electrical regeneration and their applications in neural sensing and recording as well as stimulation.
Collapse
Affiliation(s)
- Hewan Dawit
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
3
|
Lee SH, Kim YK. Application of Transcranial Direct and Alternating Current Stimulation (tDCS and tACS) on Major Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:129-143. [PMID: 39261427 DOI: 10.1007/978-981-97-4402-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Akhmadullina EM, Bodrova RA. [The use of transcranial micropolarization in the acute period of severe traumatic brain injury in children]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:13-21. [PMID: 38372733 DOI: 10.17116/kurort202410101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury, which is often considered as a silent epidemic, is a public health problem. The duration of acute recovery period remains a commonly used criterion for injury severity and clinical management. In this connection, the first stage of medical rehabilitation is carried out in the conditions of resuscitation and neurosurgery department in the hospital providing specialized care. Rehabilitation techniques such as postural training, phase verticalization, individual kinesiotherapy, transcranial micropolarization and etc. are used. OBJECTIVE To assess the effectiveness of using transcranial micropolarization in acute period of severe traumatic brain injury in children. MATERIAL AND METHODS The study on the effectiveness of using transcranial micropolarization in acute period of severe traumatic brain injury in 85 children, divided into 2 groups, was carried out. The study group (42 patients) received the transcranial micropolarization on the 2nd day after severe traumatic brain injury. The control group (43 patients) received only rehabilitation in neurosurgery department. The neurological status in the patients of both groups was assessed on the 2nd day after severe traumatic brain injury in resuscitation department, and after 1, 3 and 6 months. RESULTS AND CONCLUSION The inclusion of transcranial micropolarization in the early medical rehabilitation of children with severe traumatic brain injury increases consciousness level in a shorter period of time, that predicts early patient's socialization.
Collapse
Affiliation(s)
- E M Akhmadullina
- Children's Republican Clinical Hospital of the Republic of Tatarstan, Kazan, Russia
- Kazan State Medical Academy - branch of the Russian Medical Academy of Continuing Professional Education, Kazan, Russia
| | - R A Bodrova
- Kazan State Medical Academy - branch of the Russian Medical Academy of Continuing Professional Education, Kazan, Russia
| |
Collapse
|
5
|
Abstract
AIMS Bipolar disorders are clinically complex, chronic and recurrent disorders. Few treatment options are effective across hypomanic, manic, depressive and mixed states and as continuation or maintenance treatment after initial symptom remission. The aim of this review was to provide an up-to-date overview of research on the efficacy, tolerability and cognitive effects of electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), magnetic seizure therapy (MST), deep brain stimulation (DBS) and vagus nerve stimulation (VNS). METHODS References included in this review were identified through multiple searches of the Embase, PubMed/MEDLINE and APA PsycINFO electronic databases for articles published from inception until February 2022. Published reviews, meta-analyses, randomised controlled trials and recent studies were prioritised to provide a comprehensive and up-to-date overview of research on brain stimulation in patients with bipolar disorders. RESULTS The evidence base for brain stimulation as an add-on or alternative to pharmacological and psychological treatments in patients with bipolar disorders is limited but rapidly expanding. Brain stimulation treatments represent an opportunity to treat all bipolar disorder states, including cognitive dysfunction during euthymic periods. CONCLUSION Whilst findings to date have been encouraging, larger randomised controlled trials with long-term follow-up are needed to clarify important questions regarding treatment efficacy and tolerability, the frequency of treatment-emergent affective switches and effects on cognitive function.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| |
Collapse
|
6
|
Brunoni AR, Valiengo L, Gallucci-Neto J. Interventional psychiatry: 13 reasons why. BRAZILIAN JOURNAL OF PSYCHIATRY 2022; 44. [PMCID: PMC9851768 DOI: 10.47626/1516-4446-2022-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2024]
Affiliation(s)
- Andre R. Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Serviço de Eletroconvulsoterapia, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Departamento de Medicina Interna e Departamento de Psiquiatria, Faculdade de Medicina da USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
| | - Jose Gallucci-Neto
- Serviço de Cetamina, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
- Serviço de Eletroconvulsoterapia, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, SP, Brazil
| |
Collapse
|