1
|
Herron J, Kullmann A, Denison T, Goodman WK, Gunduz A, Neumann WJ, Provenza NR, Shanechi MM, Sheth SA, Starr PA, Widge AS. Challenges and opportunities of acquiring cortical recordings for chronic adaptive deep brain stimulation. Nat Biomed Eng 2025; 9:606-617. [PMID: 39730913 DOI: 10.1038/s41551-024-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2024] [Indexed: 12/29/2024]
Abstract
Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex. Yet capturing those markers requires the placement of cortex-optimized electrodes in addition to standard electrodes for DBS. In this Perspective we argue that the need for cortical biomarkers in adaptive DBS and the unfortunate convergence of regulatory and financial factors underpinning the unavailability of cortical electrodes for chronic uses threatens to slow down or stall research on adaptive DBS and propose public-private partnerships as a potential solution to such a critical technological gap.
Collapse
Affiliation(s)
- Jeffrey Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Aura Kullmann
- NeuroOne Medical Technologies Corporation, Eden Prairie, MN, USA
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Wayne K Goodman
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering and Fixel Institute for Neurological Disorders, University of Florida, Gainesville, FL, USA
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Maryam M Shanechi
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Horn A, Li N, Meyer GM, Gadot R, Provenza NR, Sheth SA. Deep Brain Stimulation Response Circuits in Obsessive-Compulsive Disorder. Biol Psychiatry 2025:S0006-3223(25)01096-0. [PMID: 40120789 DOI: 10.1016/j.biopsych.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
In the field of deep brain stimulation (DBS), 2 major themes are currently making significant progress. The first of these is the framework of connectomic DBS, in which circuits that are associated with improvements of specific symptoms are described and targeted to improve and potentially personalize treatment. The second theme is related to the concept of brain sensing and adaptive DBS, which are aimed at identifying neural biomarkers that may guide stimulation in a closed-loop fashion. In DBS for obsessive-compulsive disorder (OCD), substantial progress has been made on both ends over the last 5 years. Together, the results have begun to draw a picture of exactly which circuit is associated with treatment response and how it may be affected by dysfunctional brain activity that may be attenuated using DBS. This knowledge, if further refined and validated, will define where, when, and how to stimulate which patients with OCD. We review the key studies from recent years with the aim of aggregating and condensing findings along both spatial and temporal domains. The result is a concept that anatomically defines a circuit that is likely dysfunctional in patients with typical OCD phenotypes and that may be adaptively targeted using DBS to maximally improve symptoms.
Collapse
Affiliation(s)
- Andreas Horn
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Ningfei Li
- Institute for Network Stimulation, Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ron Gadot
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Electrical & Computer Engineering, Rice University, Houston, Texas
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Electrical & Computer Engineering, Rice University, Houston, Texas; Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Chou T, Kochanowski BJ, Hayden A, Borron BM, Barbeiro MC, Xu J, Kim JW, Zhang X, Bouchard RR, Phan KL, Goodman WK, Dougherty DD. A Low-Intensity Transcranial Focused Ultrasound Parameter Exploration Study of the Ventral Capsule/Ventral Striatum. Neuromodulation 2025; 28:146-154. [PMID: 38691076 DOI: 10.1016/j.neurom.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is effective for treatment-resistant obsessive-compulsive disorder (OCD); however, DBS is associated with neurosurgical risks. Transcranial focused ultrasound (tFUS) is a newer form of noninvasive (ie, nonsurgical) stimulation that can modulate deeper regions, such as the VC/VS. tFUS parameters have just begun to be studied and have often not been compared in the same participants. We explored the effects of three VC/VS tFUS protocols and an entorhinal cortex (ErC) tFUS session on the VC/VS and cortico-striato-thalamo-cortical circuit (CSTC) in healthy individuals for later application to patients with OCD. MATERIALS AND METHODS Twelve individuals participated in a total of 48 sessions of tFUS in this exploratory multisite, within-subject parameter study. We collected resting-state, reward task, and arterial spin-labeled (ASL) magnetic resonance imaging scans before and after ErC tFUS and three VC/VS tFUS sessions with different pulse repetition frequencies (PRFs), pulse widths (PWs), and duty cycles (DCs). RESULTS VC/VS protocol A (PRF = 10 Hz, PW = 5 ms, 5% DC) was associated with increased putamen activation during a reward task (p = 0.003), and increased VC/VS resting-state functional connectivity (rsFC) with the anterior cingulate cortex (p = 0.022) and orbitofrontal cortex (p = 0.004). VC/VS protocol C (PRF = 125 Hz, PW = 4 ms, 50% DC) was associated with decreased VC/VS rsFC with the putamen (p = 0.017), and increased VC/VS rsFC with the globus pallidus (p = 0.008). VC/VS protocol B (PRF = 125 Hz, PW = 0.4 ms, 5% DC) was not associated with changes in task-related CSTC activation or rsFC. None of the protocols affected CSTC ASL perfusion. CONCLUSIONS This study began to explore the multidimensional parameter space of an emerging form of noninvasive brain stimulation, tFUS. Our preliminary findings in a small sample suggest that VC/VS tFUS should continue to be investigated for future noninvasive treatment of OCD.
Collapse
Affiliation(s)
- Tina Chou
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Brian J Kochanowski
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Ashley Hayden
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Miguel C Barbeiro
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Junqian Xu
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Joo-Won Kim
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Xuefeng Zhang
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kinh Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, OH, USA
| | - Wayne K Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Reimer AE, Dastin-van Rijn EM, Kim J, Mensinger ME, Sachse EM, Wald A, Hoskins E, Singh K, Alpers A, Cooper D, Lo MC, de Oliveira AR, Simandl G, Stephenson N, Widge AS. Striatal stimulation enhances cognitive control and evidence processing in rodents and humans. Sci Transl Med 2024; 16:eadp1723. [PMID: 39693410 DOI: 10.1126/scitranslmed.adp1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Brain disorders, in particular mental disorders, might be effectively treated by direct electrical brain stimulation, but clinical progress requires understanding of therapeutic mechanisms. Animal models have not helped, because there are no direct animal models of mental illness. Here, we propose a potential path past this roadblock, by leveraging a common ingredient of most mental disorders: impaired cognitive control. We previously showed that deep brain stimulation (DBS) improves cognitive control in humans. We now reverse translate that result using a set-shifting task in rats. DBS-like stimulation of the midstriatum improved reaction times without affecting accuracy, mirroring our human findings. Impulsivity, motivation, locomotor, and learning effects were ruled out through companion tasks and model-based analyses. To identify the specific cognitive processes affected, we applied reinforcement learning drift-diffusion modeling. This approach revealed that DBS-like stimulation enhanced evidence accumulation rates and lowered decision thresholds, improving domain-general cognitive control. Reanalysis of prior human data showed that the same mechanism applies in humans. This reverse/forward translational model could have near-term implications for clinical DBS practice and future trial design.
Collapse
Affiliation(s)
- Adriano E Reimer
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Evan M Dastin-van Rijn
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Jaejoong Kim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Megan E Mensinger
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Elizabeth M Sachse
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Aaron Wald
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Eric Hoskins
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Kartikeya Singh
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Abigail Alpers
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Dawson Cooper
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Meng-Chen Lo
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | | | - Gregory Simandl
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Nathaniel Stephenson
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| | - Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minnesota, MN 55454, USA
| |
Collapse
|
5
|
McInnes AN, Olsen ST, Sullivan CR, Cooper DC, Wilson S, Sonmez AI, Albott CS, Olson SC, Peterson CB, Rittberg BR, Herman A, Bajzer M, Nahas Z, Widge AS. Trajectory Modeling and Response Prediction in Transcranial Magnetic Stimulation for Depression. PERSONALIZED MEDICINE IN PSYCHIATRY 2024; 47-48:100135. [PMID: 39257484 PMCID: PMC11382337 DOI: 10.1016/j.pmip.2024.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by more accurate and earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects (NLME) modeling have been applied to model the trajectories of antidepressant response (or non-response) to TMS, but it is not known whether such models are useful in predicting clinically meaningful change in symptom severity, i.e. categorical (non)response as opposed to continuous scores. Methods We compared LCMM and NLME approaches to model the antidepressant response to TMS in a naturalistic sample of 238 patients receiving rTMS for treatment resistant depression, across multiple coils and protocols. We then compared the predictive power of those models. Results LCMM trajectories were influenced largely by baseline symptom severity, but baseline symptoms provided little predictive power for later antidepressant response. Rather, the optimal LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = [0.52 - 0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks of treatment (AUC = 0.76, 95% CI = [0.58 - 0.94], but likewise, not before. Conclusions In showing the predictive validity of these approaches to model response trajectories to rTMS, we provided preliminary evidence that trajectory modeling could be used to guide future treatment decisions.
Collapse
Affiliation(s)
- Aaron N. McInnes
- Corresponding authors: Aaron N. McInnes PhD and Alik S. Widge MD, PhD, Department of Psychiatry, University of Minnesota, Twin Cities, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN 55455,
| | | | - Christi R.P. Sullivan
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Dawson C. Cooper
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Saydra Wilson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ayse Irem Sonmez
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - C. Sophia Albott
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Stephen C. Olson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Carol B. Peterson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Barry R. Rittberg
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Alexander Herman
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Matej Bajzer
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
6
|
Provenza NR, Reddy S, Allam AK, Rajesh SV, Diab N, Reyes G, Caston RM, Katlowitz KA, Gandhi AD, Bechtold RA, Dang HQ, Najera RA, Giridharan N, Kabotyanski KE, Momin F, Hasen M, Banks GP, Mickey BJ, Kious BM, Shofty B, Hayden BY, Herron JA, Storch EA, Patel AB, Goodman WK, Sheth SA. Disruption of neural periodicity predicts clinical response after deep brain stimulation for obsessive-compulsive disorder. Nat Med 2024; 30:3004-3014. [PMID: 38997607 PMCID: PMC11485242 DOI: 10.1038/s41591-024-03125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Recent advances in surgical neuromodulation have enabled chronic and continuous intracranial monitoring during everyday life. We used this opportunity to identify neural predictors of clinical state in 12 individuals with treatment-resistant obsessive-compulsive disorder (OCD) receiving deep brain stimulation (DBS) therapy ( NCT05915741 ). We developed our neurobehavioral models based on continuous neural recordings in the region of the ventral striatum in an initial cohort of five patients and tested and validated them in a held-out cohort of seven additional patients. Before DBS activation, in the most symptomatic state, theta/alpha (9 Hz) power evidenced a prominent circadian pattern and a high degree of predictability. In patients with persistent symptoms (non-responders), predictability of the neural data remained consistently high. On the other hand, in patients who improved symptomatically (responders), predictability of the neural data was significantly diminished. This neural feature accurately classified clinical status even in patients with limited duration recordings, indicating generalizability that could facilitate therapeutic decision-making.
Collapse
Affiliation(s)
- Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
| | - Sandesh Reddy
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Anthony K Allam
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sameer V Rajesh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nabeel Diab
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Reyes
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Rose M Caston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ajay D Gandhi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Raphael A Bechtold
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Huy Q Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nisha Giridharan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Faiza Momin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Mohammed Hasen
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Brian J Mickey
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brent M Kious
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Ben Shofty
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey A Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Ankit B Patel
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
McInnes AN, Olsen ST, Sullivan CR, Cooper DC, Wilson S, Sonmez AI, Albott SC, Olson SC, Peterson CB, Rittberg BR, Herman A, Bajzer M, Nahas Z, Widge AS. Trajectory Modeling and Response Prediction in Transcranial Magnetic Stimulation for Depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.30.24308258. [PMID: 38853937 PMCID: PMC11160841 DOI: 10.1101/2024.05.30.24308258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) therapy could be improved by better and earlier prediction of response. Latent class mixture (LCMM) and non-linear mixed effects (NLME) modelling have been applied to model the trajectories of antidepressant response (or non-response) to TMS, but it is not known whether such models can predict clinical outcomes. We compared LCMM and NLME approaches to model the antidepressant response to TMS in a naturalistic sample of 238 patients receiving rTMS for treatment resistant depression (TRD), across multiple coils and protocols. We then compared the predictive power of those models. LCMM trajectories were influenced largely by baseline symptom severity, but baseline symptoms provided little predictive power for later antidepressant response. Rather, the optimal LCMM model was a nonlinear two-class model that accounted for baseline symptoms. This model accurately predicted patient response at 4 weeks of treatment (AUC = 0.70, 95% CI = [0.52-0.87]), but not before. NLME offered slightly improved predictive performance at 4 weeks of treatment (AUC = 0.76, 95% CI = [0.58 - 0.94], but likewise, not before. In showing the predictive validity of these approaches to model response trajectories to rTMS, we provided preliminary evidence that trajectory modeling could be used to guide future treatment decisions.
Collapse
Affiliation(s)
- Aaron N. McInnes
- Corresponding authors: Aaron N. McInnes PhD and Alik S. Widge MD, PhD, Department of Psychiatry, University of Minnesota, Twin Cities, McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN 55455,
| | | | - Christi R.P. Sullivan
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Dawson C. Cooper
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Saydra Wilson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ayse Irem Sonmez
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sophia C. Albott
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Stephen C. Olson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Carol B. Peterson
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Barry R. Rittberg
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Alexander Herman
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Matej Bajzer
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Science, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
8
|
Fan JM, De B, Frank AC, Basich-Pease G, Norbu T, Morrison MA, Larson P, Starr PA, Krystal AD, Lee AM. Intracranial beta activity is a biomarker of circadian and stimulation-induced arousal in obsessive compulsive disorder. Brain Stimul 2024; 17:29-31. [PMID: 38097012 PMCID: PMC11539915 DOI: 10.1016/j.brs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Joline M Fan
- Department of Neurology, University of California, San Francisco, USA
| | - Bianca De
- School of Medicine, University of California, San Francisco, USA
| | - Adam C Frank
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of USC, USA
| | - Genevieve Basich-Pease
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - Tenzin Norbu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Paul Larson
- Department of Neurosurgery, University of Arizona, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA
| | - A Moses Lee
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, USA.
| |
Collapse
|
9
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
10
|
Rissardo JP, Vora NM, Tariq I, Mujtaba A, Caprara ALF. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1991. [PMID: 38004040 PMCID: PMC10673515 DOI: 10.3390/medicina59111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
In recent decades, deep brain stimulation (DBS) has been extensively studied due to its reversibility and significantly fewer side effects. DBS is mainly a symptomatic therapy, but the stimulation of subcortical areas by DBS is believed to affect the cytoarchitecture of the brain, leading to adaptability and neurogenesis. The neurological disorders most commonly studied with DBS were Parkinson's disease, essential tremor, obsessive-compulsive disorder, and major depressive disorder. The most precise approach to evaluating the location of the leads still relies on the stimulus-induced side effects reported by the patients. Moreover, the adequate voltage and DBS current field could correlate with the patient's symptoms. Implantable pulse generators are the main parts of the DBS, and their main characteristics, such as rechargeable capability, magnetic resonance imaging (MRI) safety, and device size, should always be discussed with patients. The safety of MRI will depend on several parameters: the part of the body where the device is implanted, the part of the body scanned, and the MRI-tesla magnetic field. It is worth mentioning that drug-resistant individuals may have different pathophysiological explanations for their resistance to medications, which could affect the efficacy of DBS therapy. Therefore, this could explain the significant difference in the outcomes of studies with DBS in individuals with drug-resistant neurological conditions.
Collapse
Affiliation(s)
| | - Nilofar Murtaza Vora
- Medicine Department, Terna Speciality Hospital and Research Centre, Navi Mumbai 400706, India;
| | - Irra Tariq
- Medicine Department, United Medical & Dental College, Karachi 75600, Pakistan;
| | - Amna Mujtaba
- Medicine Department, Karachi Medical & Dental College, Karachi 74700, Pakistan;
| | | |
Collapse
|
11
|
Shofty B, Gadot R, Viswanathan A, Provenza NR, Storch EA, McKay SA, Meyers MS, Hertz AG, Avendano-Ortega M, Goodman WK, Sheth SA. Intraoperative valence testing to adjudicate between ventral capsule/ventral striatum and bed nucleus of the stria terminalis target selection in deep brain stimulation for obsessive-compulsive disorder. J Neurosurg 2023; 139:442-450. [PMID: 36681982 DOI: 10.3171/2022.10.jns221683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an accepted therapy for severe, treatment-refractory obsessive-compulsive disorder (trOCD). The optimal DBS target location within the anterior limb of the internal capsule, particularly along the anterior-posterior axis, remains elusive. Empirical evidence from several studies in the past decade has suggested that the ideal target lies in the vicinity of the anterior commissure (AC), either just anterior to the AC, above the ventral striatum (VS), or just posterior to the AC, above the bed nucleus of the stria terminalis (BNST). Various methods have been utilized to optimize target selection for trOCD DBS. The authors describe their practice of planning trajectories to both the VS and BNST and adjudicating between them with awake intraoperative valence testing to individualize permanent target selection. METHODS Eight patients with trOCD underwent awake DBS with trajectories planned for both VS and BNST targets bilaterally. The authors intraoperatively assessed the acute effects of stimulation on mood, energy, and anxiety and implanted the trajectory with the most reliable positive valence responses and least stimulation-induced side effects. The method of intraoperative target adjudication is described, and the OCD outcome at last follow-up is reported. RESULTS The mean patient age at surgery was 41.25 ± 15.1 years, and the mean disease duration was 22.75 ± 10.2 years. The median preoperative Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score was 39 (range 34-40). Two patients had previously undergone capsulotomy, with insufficient response. Seven (44%) of 16 leads were moved to the second target based on intraoperative stimulation findings, 4 of them to avoid strong negative valence effects. Three patients had an asymmetric implant (1 lead in each target). All 8 patients (100%) met full response criteria, and the mean Y-BOCS score reduction across the full cohort was 51.2% ± 12.8%. CONCLUSIONS Planning and intraoperatively testing trajectories flanking the AC-superjacent to the VS anteriorly and to the BNST posteriorly-allowed identification of positive valence responses and acute adverse effects. Awake testing helped to select between possible trajectories and identify individually optimized targets in DBS for trOCD.
Collapse
Affiliation(s)
- Ben Shofty
- 1Department of Neurosurgery, University of Utah, Salt Lake City, Utah; and
| | | | | | | | - Eric A Storch
- 3Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Sarah A McKay
- 3Psychiatry, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | |
Collapse
|
12
|
Nagrale SS, Yousefi A, Netoff TI, Widge AS. In silicodevelopment and validation of Bayesian methods for optimizing deep brain stimulation to enhance cognitive control. J Neural Eng 2023; 20:036015. [PMID: 37105164 PMCID: PMC10193041 DOI: 10.1088/1741-2552/acd0d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
Objective.deep brain stimulation (DBS) of the ventral internal capsule/striatum (VCVS) is a potentially effective treatment for several mental health disorders when conventional therapeutics fail. Its effectiveness, however, depends on correct programming to engage VCVS sub-circuits. VCVS programming is currently an iterative, time-consuming process, with weeks between setting changes and reliance on noisy, subjective self-reports. An objective measure of circuit engagement might allow individual settings to be tested in seconds to minutes, reducing the time to response and increasing patient and clinician confidence in the chosen settings. Here, we present an approach to measuring and optimizing that circuit engagement.Approach.we leverage prior results showing that effective VCVS DBS engages cognitive control circuitry and improves performance on the multi-source interference task, that this engagement depends primarily on which contact(s) are activated, and that circuit engagement can be tracked through a state space modeling framework. We develop a simulation framework based on those empirical results, then combine this framework with an adaptive optimizer to simulate a principled exploration of electrode contacts and identify the contacts that maximally improve cognitive control. We explore multiple optimization options (algorithms, number of inputs, speed of stimulation parameter changes) and compare them on problems of varying difficulty.Main results.we show that an upper confidence bound algorithm outperforms other optimizers, with roughly 80% probability of convergence to a global optimum when used in a majority-vote ensemble.Significance.we show that the optimization can converge even with lag between stimulation and effect, and that a complete optimization can be done in a clinically feasible timespan (a few hours). Further, the approach requires no specialized recording or imaging hardware, and thus could be a scalable path to expand the use of DBS in psychiatric and other non-motor applications.
Collapse
Affiliation(s)
- Sumedh S Nagrale
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Ali Yousefi
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
13
|
Basu I, Yousefi A, Crocker B, Zelmann R, Paulk AC, Peled N, Ellard KK, Weisholtz DS, Cosgrove GR, Deckersbach T, Eden UT, Eskandar EN, Dougherty DD, Cash SS, Widge AS. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat Biomed Eng 2023; 7:576-588. [PMID: 34725508 PMCID: PMC9056584 DOI: 10.1038/s41551-021-00804-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Deficits in cognitive control-that is, in the ability to withhold a default pre-potent response in favour of a more adaptive choice-are common in depression, anxiety, addiction and other mental disorders. Here we report proof-of-concept evidence that, in participants undergoing intracranial epilepsy monitoring, closed-loop direct stimulation of the internal capsule or striatum, especially the dorsal sites, enhances the participants' cognitive control during a conflict task. We also show that closed-loop stimulation upon the detection of lapses in cognitive control produced larger behavioural changes than open-loop stimulation, and that task performance for single trials can be directly decoded from the activity of a small number of electrodes via neural features that are compatible with existing closed-loop brain implants. Closed-loop enhancement of cognitive control might remediate underlying cognitive deficits and aid the treatment of severe mental disorders.
Collapse
Affiliation(s)
- Ishita Basu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Yousefi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Departments of Computer Science and Neuroscience, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Noam Peled
- Department of Radiology, MGH/HST Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - G Rees Cosgrove
- Department of Neurological Surgery, Brigham & Womens Hospital, Boston, MA, USA
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Widge AS, Zhang F, Gosai A, Papadimitrou G, Wilson-Braun P, Tsintou M, Palanivelu S, Noecker AM, McIntyre CC, O’Donnell L, McLaughlin NCR, Greenberg BD, Makris N, Dougherty DD, Rathi Y. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive-compulsive disorder. Neuropsychopharmacology 2022; 47:965-972. [PMID: 34621015 PMCID: PMC8882183 DOI: 10.1038/s41386-021-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Deep brain stimulation (DBS) of the ventral internal capsule/ventral striatum (VCVS) is an emerging treatment for obsessive-compulsive disorder (OCD). Recently, multiple studies using normative connectomes have correlated DBS outcomes to stimulation of specific white matter tracts. Those studies did not test whether these correlations are clinically predictive, and did not apply cross-validation approaches that are necessary for biomarker development. Further, they did not account for the possibility of systematic differences between DBS patients and the non-diagnosed controls used in normative connectomes. To address these gaps, we performed patient-specific diffusion imaging in 8 patients who underwent VCVS DBS for OCD. We delineated tracts connecting thalamus and subthalamic nucleus (STN) to prefrontal cortex via VCVS. We then calculated which tracts were likely activated by individual patients' DBS settings. We fit multiple statistical models to predict both OCD and depression outcomes from tract activation. We further attempted to predict hypomania, a VCVS DBS complication. We assessed all models' performance on held-out test sets. With this best-practices approach, no model predicted OCD response, depression response, or hypomania above chance. Coefficient inspection partly supported prior reports, in that capture of tracts projecting to cingulate cortex was associated with both YBOCS and MADRS response. In contrast to prior reports, however, tracts connected to STN were not reliably correlated with response. Thus, patient-specific imaging and a guideline-adherent analysis were unable to identify a tractographic target with sufficient effect size to drive clinical decision-making or predict individual outcomes. These findings suggest caution in interpreting the results of normative connectome studies.
Collapse
Affiliation(s)
- Alik S. Widge
- grid.17635.360000000419368657Department of Psychiatry, University of Minnesota, Minneapolis, MN USA
| | - Fan Zhang
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Aishwarya Gosai
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - George Papadimitrou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Peter Wilson-Braun
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Magdalini Tsintou
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Senthil Palanivelu
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Angela M. Noecker
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Cameron C. McIntyre
- grid.67105.350000 0001 2164 3847Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH USA
| | - Lauren O’Donnell
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA
| | - Nicole C. R. McLaughlin
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA
| | - Benjamin D. Greenberg
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI USA ,grid.273271.20000 0000 8593 9332Butler Hospital, Providence, RI USA ,Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI USA
| | - Nikolaos Makris
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Darin D. Dougherty
- grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| | - Yogesh Rathi
- grid.62560.370000 0004 0378 8294Department of Radiology, Brigham and Womens Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Massachusetts General Hospital, Boston, MA USA
| |
Collapse
|
15
|
Rasmussen SA, Goodman WK. The prefrontal cortex and neurosurgical treatment for intractable OCD. Neuropsychopharmacology 2022; 47:349-360. [PMID: 34433915 PMCID: PMC8616947 DOI: 10.1038/s41386-021-01149-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, circuit-based neurosurgical procedures have gained increasing acceptance as a safe and efficacious approach to the treatment of the intractable obsessive-compulsive disorder (OCD). Lesions and deep brain stimulation (DBS) of the longitudinal corticofugal white matter tracts connecting the prefrontal cortex with the striatum, thalamus, subthalamic nucleus (STN), and brainstem implicate orbitofrontal, medial prefrontal, frontopolar, and ventrolateral cortical networks in the symptoms underlying OCD. The highly parallel distributed nature of these networks may explain the relative lack of adverse effects observed following surgery. Additional pre-post studies of cognitive tasks in more surgical patients are needed to confirm the role of these networks in OCD and to define therapeutic responses to surgical intervention.
Collapse
Affiliation(s)
- Steven A. Rasmussen
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert School of Medicine, Brown University, Providence, RI USA ,grid.40263.330000 0004 1936 9094Carney Brain Science Institute, Brown University, Providence, RI USA
| | - Wayne K. Goodman
- grid.39382.330000 0001 2160 926XMenninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
16
|
Seritan AL, Spiegel LL, Weinstein JL, Racine CA, Brown EG, Volz M, de Hemptinne C, Starr PA, Ostrem JL. Elevated Mood States in Patients With Parkinson's Disease Treated With Deep Brain Stimulation: Diagnosis and Management Strategies. J Neuropsychiatry Clin Neurosci 2021; 33:314-320. [PMID: 34213980 DOI: 10.1176/appi.neuropsych.20080205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective surgical treatment for patients with Parkinson's disease (PD). DBS therapy, particularly with the subthalamic nucleus (STN) target, has been linked to rare psychiatric complications, including depression, impulsivity, irritability, and suicidality. Stimulation-induced elevated mood states can also occur. These episodes rarely meet DSM-5 criteria for mania or hypomania. METHODS The investigators conducted a chart review of 82 patients with PD treated with DBS. RESULTS Nine (11%) patients developed stimulation-induced elevated mood. Five illustrative cases are described (all males with STN DBS; mean age=62.2 years [SD=10.5], mean PD duration=8.6 years [SD=1.6]). Elevated mood states occurred during or shortly after programming changes, when more ventral contacts were used (typically in monopolar mode) and lasted minutes to months. Four patients experienced elevated mood at low amplitudes (1.0 V/1.0 mA); all had psychiatric risk factors (history of impulse-control disorder, dopamine dysregulation syndrome, substance use disorder, and/or bipolar diathesis) that likely contributed to mood destabilization. CONCLUSIONS Preoperative DBS evaluations should include a thorough assessment of psychiatric risk factors. The term "stimulation-induced elevated mood states" is proposed to describe episodes of elevated, expansive, or irritable mood and psychomotor agitation that occur during or shortly after DBS programming changes and may be associated with increased goal-directed activity, impulsivity, grandiosity, pressured speech, flight of ideas, or decreased need for sleep and may persist beyond stimulation adjustments. This clinical phenomenon should be considered for inclusion in the bipolar disorder category in future DSM revisions, allowing for increased recognition and appropriate management.
Collapse
Affiliation(s)
- Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Lauren L Spiegel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Jessica L Weinstein
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Caroline A Racine
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Ethan G Brown
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Monica Volz
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Coralie de Hemptinne
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Philip A Starr
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| | - Jill L Ostrem
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco (Seritan); Weill Institute for Neurosciences, University of California, San Francisco (Seritan, Spiegel, Racine, Brown, Volz, Starr, Ostrem); Department of Neurology, University of California, San Francisco (Spiegel, Brown, Volz, Ostrem); Kaiser Permanente Group, Roseville, Calif. (Weinstein); Department of Neurological Surgery, University of California, San Francisco (Racine, Starr); and the Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville (de Hemptinne)
| |
Collapse
|
17
|
Outram S, Muñoz KA, Kostick-Quenet K, Sanchez CE, Kalwani L, Lavingia R, Torgerson L, Sierra-Mercado D, Robinson JO, Pereira S, Koenig BA, Starr PA, Gunduz A, Foote KD, Okun MS, Goodman WK, McGuire AL, Zuk P, Lázaro-Muñoz G. Patient, Caregiver, and Decliner Perspectives on Whether to Enroll in Adaptive Deep Brain Stimulation Research. Front Neurosci 2021; 15:734182. [PMID: 34690676 PMCID: PMC8529029 DOI: 10.3389/fnins.2021.734182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
This research study provides patient and caregiver perspectives as to whether or not to undergo adaptive deep brain stimulation (aDBS) research. A total of 51 interviews were conducted in a multi-site study including patients undergoing aDBS and their respective caregivers along with persons declining aDBS. Reasons highlighted for undergoing aDBS included hopes for symptom alleviation, declining quality of life, desirability of being in research, and altruism. The primary reasons for not undergoing aDBS issues were practical rather than specific to aDBS technology, although some persons highlighted a desire to not be the first to trial the new technology. These themes are discussed in the context of "push" factors wherein any form of surgical intervention is preferable to none and "pull" factors wherein opportunities to contribute to science combine with hopes and/or expectations for the alleviation of symptoms. We highlight the significance of study design in decision making. aDBS is an innovative technology and not a completely new technology. Many participants expressed value in being part of research as an important consideration. We suggest that there are important implications when comparing patient perspectives vs. theoretical perspectives on the choice for or against aDBS. Additionally, it will be important how we communicate with patients especially in reference to the complexity of study design. Ultimately, this study reveals that there are benefits and potential risks when choosing a research study that involves implantation of a medical device.
Collapse
Affiliation(s)
- Simon Outram
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Katrina A. Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Clarissa E. Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | | | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Demetrio Sierra-Mercado
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jill O. Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Barbara A. Koenig
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A. Starr
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Kelly D. Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Amy L. McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Peter Zuk
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
18
|
Mar-Barrutia L, Real E, Segalás C, Bertolín S, Menchón JM, Alonso P. Deep brain stimulation for obsessive-compulsive disorder: A systematic review of worldwide experience after 20 years. World J Psychiatry 2021; 11:659-680. [PMID: 34631467 PMCID: PMC8474989 DOI: 10.5498/wjp.v11.i9.659] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Twenty years after its first use in a patient with obsessive-compulsive disorder (OCD), the results confirm that deep brain stimulation (DBS) is a promising therapy for patients with severe and resistant forms of the disorder. Nevertheless, many unknowns remain, including the optimal anatomical targets, the best stimulation parameters, the long-term (LT) effects of the therapy, and the clinical or biological factors associated with response. This systematic review of the articles published to date on DBS for OCD assesses the short and LT efficacy of the therapy and seeks to identify predictors of response.
AIM To summarize the existing knowledge on the efficacy and tolerability of DBS in treatment-resistant OCD.
METHODS A comprehensive search was conducted in the PubMed, Cochrane, Scopus, and ClinicalTrials.gov databases from inception to December 31, 2020, using the following strategy: “(Obsessive-compulsive disorder OR OCD) AND (deep brain stimulation OR DBS).” Clinical trials and observational studies published in English and evaluating the effectiveness of DBS for OCD in humans were included and screened for relevant information using a standardized collection tool. The inclusion criteria were as follows: a main diagnosis of OCD, DBS conducted for therapeutic purposes and variation in symptoms of OCD measured by the Yale-Brown Obsessive-Compulsive scale (Y-BOCS) as primary outcome. Data were analyzed with descriptive statistics.
RESULTS Forty articles identified by the search strategy met the eligibility criteria. Applying a follow-up threshold of 36 mo, 29 studies (with 230 patients) provided information on short-term (ST) response to DBS in, while 11 (with 155 patients) reported results on LT response. Mean follow-up period was 18.5 ± 8.0 mo for the ST studies and 63.7 ± 20.7 mo for the LT studies. Overall, the percentage of reduction in Y-BOCS scores was similar in ST (47.4%) and LT responses (47.2%) to DBS, but more patients in the LT reports met the criteria for response (defined as a reduction in Y-BOCS scores > 35%: ST, 60.6% vs LT, 70.7%). According to the results, the response in the first year predicts the extent to which an OCD patient will benefit from DBS, since the maximum symptom reduction was achieved in most responders in the first 12-14 mo after implantation. Reports indicate a consistent tendency for this early improvement to be maintained to the mid-term for most patients; but it is still controversial whether this improvement persists, increases or decreases in the long term. Three different patterns of LT response emerged from the analysis: 49.5% of patients had good and sustained response to DBS, 26.6% were non responders, and 22.5% were partial responders, who might improve at some point but experience relapses during follow-up. A significant improvement in depressive symptoms and global functionality was observed in most studies, usually (although not always) in parallel with an improvement in obsessive symptoms. Most adverse effects of DBS were mild and transient and improved after adjusting stimulation parameters; however, some severe adverse events including intracranial hemorrhages and infections were also described. Hypomania was the most frequently reported psychiatric side effect. The relationship between DBS and suicide risk is still controversial and requires further study. Finally, to date, no clear clinical or biological predictors of response can be established, probably because of the differences between studies in terms of the neuroanatomical targets and stimulation protocols assessed.
CONCLUSION The present review confirms that DBS is a promising therapy for patients with severe resistant OCD, providing both ST and LT evidence of efficacy.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Cinto Segalás
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Hospital de Bellvitge, Barcelona 08907, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Barcelona 08907, Spain
- CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid 28029, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona 08907, Spain
| |
Collapse
|
19
|
Camprodon JA, Chou T, Testo AA, Deckersbach T, Scharf JM, Dougherty DD. Case Report: Deep Brain Stimulation to the Ventral Internal Capsule/Ventral Striatum Induces Repeated Transient Episodes of Voltage-Dependent Tourette-Like Behaviors. Front Hum Neurosci 2021; 14:590379. [PMID: 33568978 PMCID: PMC7869408 DOI: 10.3389/fnhum.2020.590379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
Deep Brain Stimulation (DBS) is an invasive device-based neuromodulation technique that allows the therapeutic direct stimulation of subcortical and deep cortical structures following the surgical placement of stimulating electrodes. DBS is approved by the U.S. Federal Drug Administration for the treatment of movement disorders and obsessive-compulsive disorder, while new indications, including Major Depressive Disorder (MDD), are in experimental development. We report the case of a patient with MDD who received DBS to the ventral internal capsule and ventral striatum bilaterally and presented with 2 weeks of voltage-dependent Tourette-like symptoms including brief transient episodes of abrupt-onset and progressively louder coprolalia and stuttered speech; tic-like motor behavior in his right arm and leg; rushes of anxiety, angry prosody, angry affect; and moderate amnesia without confusion. We describe the results of the inpatient neuropsychiatric workup leading to the diagnosis of iatrogenic voltage-dependent activation of cortico-subcortical circuits and discuss insights into the pathophysiology of Tourette as well as safety considerations raised by the case.
Collapse
Affiliation(s)
- Joan A Camprodon
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tina Chou
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Abigail A Testo
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Thilo Deckersbach
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Jeremiah M Scharf
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Darin D Dougherty
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Sullivan CRP, Olsen S, Widge AS. Deep brain stimulation for psychiatric disorders: From focal brain targets to cognitive networks. Neuroimage 2021; 225:117515. [PMID: 33137473 PMCID: PMC7802517 DOI: 10.1016/j.neuroimage.2020.117515] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 10/24/2020] [Indexed: 01/16/2023] Open
Abstract
Deep brain stimulation (DBS) is a promising intervention for treatment-resistant psychiatric disorders, particularly major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Up to 90% of patients who have not recovered with therapy or medication have reported benefit from DBS in open-label studies. Response rates in randomized controlled trials (RCTs), however, have been much lower. This has been argued to arise from surgical variability between sites, and recent psychiatric DBS research has focused on refining targeting through personalized imaging. Much less attention has been given to the fact that psychiatric disorders arise from dysfunction in distributed brain networks, and that DBS likely acts by altering communication within those networks. This is in part because psychiatric DBS research relies on subjective rating scales that make it difficult to identify network biomarkers. Here, we overview recent DBS RCT results in OCD and MDD, as well as the follow-on imaging studies. We present evidence for a new approach to studying DBS' mechanisms of action, focused on measuring objective cognitive/emotional deficits that underpin these and many other mental disorders. Further, we suggest that a focus on cognition could lead to reliable network biomarkers at an electrophysiologic level, especially those related to inter-regional synchrony of the local field potential (LFP). Developing the network neuroscience of DBS has the potential to finally unlock the potential of this highly specific therapy.
Collapse
Affiliation(s)
- Christi R P Sullivan
- University of Minnesota Medical School Department of Psychiatry and Behavioral Sciences, 2001 6th Street SE, Minneapolis, MN 55454, USA.
| | - Sarah Olsen
- University of Minnesota Medical School Department of Psychiatry and Behavioral Sciences, 2001 6th Street SE, Minneapolis, MN 55454, USA.
| | - Alik S Widge
- University of Minnesota Medical School Department of Psychiatry and Behavioral Sciences, 2001 6th Street SE, Minneapolis, MN 55454, USA.
| |
Collapse
|
21
|
Testo AA, Garnaat SL, Corse AK, McLaughlin N, Greenberg BD, Deckersbach T, Eskandar EN, Dougherty DD, Widge AS. A case of non-affective psychosis followed by extended response to non-stimulation in deep brain stimulation for obsessive-compulsive disorder. Brain Stimul 2020; 13:1317-1319. [PMID: 32622060 DOI: 10.1016/j.brs.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Abigail A Testo
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| | - Sarah L Garnaat
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Andrew K Corse
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA; University of California, Department of Psychiatry, Los Angeles, CA, USA
| | - Nicole McLaughlin
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Benjamin D Greenberg
- Butler Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Thilo Deckersbach
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Emad N Eskandar
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA; Yeshiva University Albert Einstein College of Medicine, Bronx, NY, USA
| | - Darin D Dougherty
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - Alik S Widge
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| |
Collapse
|
22
|
Goodman WK, Storch EA, Cohn JF, Sheth SA. Deep Brain Stimulation for Intractable Obsessive-Compulsive Disorder: Progress and Opportunities. Am J Psychiatry 2020; 177:200-203. [PMID: 32114787 PMCID: PMC7239379 DOI: 10.1176/appi.ajp.2020.20010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wayne K Goodman
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Eric A Storch
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Jeffrey F Cohn
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| | - Sameer A Sheth
- From the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Goodman, Storch); the Department of Psychology, University of Pittsburgh (Cohn); and the Department of Neurosurgery, Baylor College of Medicine, Houston (Sheth)
| |
Collapse
|
23
|
Denys D, Graat I, Mocking R, de Koning P, Vulink N, Figee M, Ooms P, Mantione M, van den Munckhof P, Schuurman R. Efficacy of Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Refractory Obsessive-Compulsive Disorder: A Clinical Cohort of 70 Patients. Am J Psychiatry 2020; 177:265-271. [PMID: 31906709 DOI: 10.1176/appi.ajp.2019.19060656] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment option for patients with refractory obsessive-compulsive disorder (OCD). However, clinical experience with DBS for OCD remains limited. The authors examined the tolerability and effectiveness of DBS in an open study of patients with refractory OCD. METHODS Seventy consecutive patients, including 16 patients from a previous trial, received bilateral DBS of the ventral anterior limb of the internal capsule (vALIC) between April 2005 and October 2017 and were followed for 12 months. Primary effectiveness was assessed by the change in scores on the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) from baseline until the 12-month follow-up. Response was defined by a ≥35% decrease in Y-BOCS score, partial response was defined by a 25%-34% decrease, and nonresponse was defined by a <25% decrease. Secondary effectiveness measures were the Hamilton Anxiety Rating Scale (HAM-A) and the Hamilton Depression Rating Scale (HAM-D). RESULTS Y-BOCS, HAM-A, and HAM-D scores all decreased significantly during the first 12 months of DBS. Twelve months of DBS resulted in a mean Y-BOCS score decrease of 13.5 points (SD=9.4) (40% reduction; effect size=1.5). HAM-A scores decreased by 13.4 points (SD=9.7) (55%; effect size=1.4), and HAM-D scores decreased by 11.2 points (SD=8.8) (54%; effect size=1.3). At the 12-month follow-up, 36 of the 70 patients were categorized as responders (52%), 12 patients as partial responders (17%), and 22 patients as nonresponders (31%). Adverse events included transient symptoms of hypomania, agitation, impulsivity, and sleeping disorders. CONCLUSIONS These results confirm the effectiveness and safety of DBS of the vALIC for patients with treatment-refractory OCD in a regular clinical setting.
Collapse
Affiliation(s)
- Damiaan Denys
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Ilse Graat
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Roel Mocking
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Pelle de Koning
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Nienke Vulink
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Martijn Figee
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Pieter Ooms
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Mariska Mantione
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Pepijn van den Munckhof
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| | - Rick Schuurman
- The Department of Psychiatry, University of Amsterdam (Denys, Graat, Mocking, de Koning, Vulink, Ooms); the Department of Psychiatry, Mount Sinai Hospital, New York (Figee); the Department of Neurosurgery, University of Amsterdam (van den Munckhof, Schuurman); and the Department of Neurology and Neurosurgery, University of Amsterdam Utrecht, Utrecht, the Netherlands (Mantione)
| |
Collapse
|
24
|
Graat I, van Rooijen G, Mocking R, Vulink N, de Koning P, Schuurman R, Denys D. Is deep brain stimulation effective and safe for patients with obsessive compulsive disorder and comorbid bipolar disorder? J Affect Disord 2020; 264:69-75. [PMID: 31846903 DOI: 10.1016/j.jad.2019.11.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for refractory obsessive-compulsive disorder (OCD). Bipolar disorder (BD) is generally considered a contra-indication for DBS due to frequently reported transient impulsivity or (hypo)mania. OBJECTIVE The present study is the first study to examine effectiveness and safety of DBS for patients with OCD and BD. METHODS Five consecutive patients suffering from treatment-refractory OCD with comorbid BD (I or II) underwent DBS of the ventral anterior limb of the internal capsule (vALIC). We examined effectiveness of DBS on symptoms of OCD and depression, using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Hamilton Depression Rating Scale (HAM-D). We monitored side-effects, in particular DBS-induced (hypo)manic symptoms, using the Young mania rating scale (YMRS). RESULTS Follow-up time ranged between 15 and 68 months. vALIC-DBS led to a significant improvement of OCD and depressive symptoms. Mean Y-BOCS score decreased from 36.8 (SD 2.4) to 22.4 (SD 9.4). Mean HAM-D score dropped from 24.2 (SD 8.6) to 16.5 (SD 11.3). Transient hypomanic symptoms were observed in 4 out of 5 patients and in 1 patient, hypomanic symptoms resolved by adjusting stimulation and medication. Changes in YMRS scores were not significant. Hypomanic symptoms did not result in admission or lasting adverse consequences. CONCLUSION DBS effectively alleviates symptoms of OCD and depression in patients with OCD and BD but there is a large risk of developing transient hypomanic symptoms. Altogether, comorbid BD should not be considered as an absolute contra-indication for DBS in OCD patients with comorbid BD, but patients should be monitored carefully during optimization and follow-up of DBS.
Collapse
Affiliation(s)
- Ilse Graat
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands.
| | - Geeske van Rooijen
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Roel Mocking
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Nienke Vulink
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Pelle de Koning
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Academic Medical Centre (Amsterdam UMC), Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam Universitair Medisch Centrum, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Guzick A, Hunt PJ, Bijanki KR, Schneider SC, Sheth SA, Goodman WK, Storch EA. Improving long term patient outcomes from deep brain stimulation for treatment-refractory obsessive-compulsive disorder. Expert Rev Neurother 2019; 20:95-107. [PMID: 31730752 DOI: 10.1080/14737175.2020.1694409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Deep brain stimulation (DBS) has emerged as an effective treatment for patients with severe treatment-refractory obsessive-compulsive disorder (OCD). Over the past two decades, several clinical trials with multiple years of follow-up have shown that DBS offers long-term symptom relief for individuals with severe OCD, though a portion of patients do not achieve an adequate response.Areas covered: This review sought to summarize the literature on the efficacy and long-term effectiveness of DBS for OCD, and to identify strategies that have the potential to improve treatment outcomes.Expert opinion: Although this literature is just emerging, a small number of DBS enhancement strategies have shown promising initial results. More posterior targets along the striatal axis and at the bed nucleus of the stria terminalis appear to offer greater symptom relief than more anterior targets. Research is also beginning to demonstrate the feasibility of maximizing treatment outcomes with target selection based on neural activation patterns during symptom provocation and clinical presentation. Finally, integrating DBS with post-surgery exposure and response prevention therapy appears to be another promising approach. Definitive conclusions about these strategies are limited by a low number of studies with small sample sizes that will require multi-site replication.
Collapse
Affiliation(s)
- Andrew Guzick
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Psychology, Texas Children's Hospital, Houston, TX, USA.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Patrick J Hunt
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Kelly R Bijanki
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sophie C Schneider
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wayne K Goodman
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eric A Storch
- Departments of Psychiatry & Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun 2019; 10:1536. [PMID: 30948727 PMCID: PMC6449385 DOI: 10.1038/s41467-019-09557-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is a circuit-oriented treatment for mental disorders. Unfortunately, even well-conducted psychiatric DBS clinical trials have yielded inconsistent symptom relief, in part because DBS’ mechanism(s) of action are unclear. One clue to those mechanisms may lie in the efficacy of ventral internal capsule/ventral striatum (VCVS) DBS in both major depression (MDD) and obsessive-compulsive disorder (OCD). MDD and OCD both involve deficits in cognitive control. Cognitive control depends on prefrontal cortex (PFC) regions that project into the VCVS. Here, we show that VCVS DBS’ effect is explained in part by enhancement of PFC-driven cognitive control. DBS improves human subjects’ performance on a cognitive control task and increases theta (5–8Hz) oscillations in both medial and lateral PFC. The theta increase predicts subjects’ clinical outcomes. Our results suggest a possible mechanistic approach to DBS therapy, based on tuning stimulation to optimize these neurophysiologic phenomena. Deep brain stimulation (DBS) is a promising treatment for psychiatric disorders, but its mechanism in relieving symptoms is unclear. Here, the authors show that DBS of ventral internal capsule/ventral striatum (VCVS) may act by enhancing prefrontal cortex oscillations that in turn enhance cognitive control.
Collapse
|
27
|
|
28
|
Provenza NR, Matteson ER, Allawala AB, Barrios-Anderson A, Sheth SA, Viswanathan A, McIngvale E, Storch EA, Frank MJ, McLaughlin NCR, Cohn JF, Goodman WK, Borton DA. The Case for Adaptive Neuromodulation to Treat Severe Intractable Mental Disorders. Front Neurosci 2019; 13:152. [PMID: 30890909 PMCID: PMC6412779 DOI: 10.3389/fnins.2019.00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mental disorders are a leading cause of disability worldwide, and available treatments have limited efficacy for severe cases unresponsive to conventional therapies. Neurosurgical interventions, such as lesioning procedures, have shown success in treating refractory cases of mental illness, but may have irreversible side effects. Neuromodulation therapies, specifically Deep Brain Stimulation (DBS), may offer similar therapeutic benefits using a reversible (explantable) and adjustable platform. Early DBS trials have been promising, however, pivotal clinical trials have failed to date. These failures may be attributed to targeting, patient selection, or the “open-loop” nature of DBS, where stimulation parameters are chosen ad hoc during infrequent visits to the clinician’s office that take place weeks to months apart. Further, the tonic continuous stimulation fails to address the dynamic nature of mental illness; symptoms often fluctuate over minutes to days. Additionally, stimulation-based interventions can cause undesirable effects if applied when not needed. A responsive, adaptive DBS (aDBS) system may improve efficacy by titrating stimulation parameters in response to neural signatures (i.e., biomarkers) related to symptoms and side effects. Here, we present rationale for the development of a responsive DBS system for treatment of refractory mental illness, detail a strategic approach for identification of electrophysiological and behavioral biomarkers of mental illness, and discuss opportunities for future technological developments that may harness aDBS to deliver improved therapy.
Collapse
Affiliation(s)
- Nicole R Provenza
- Brown University School of Engineering, Providence, RI, United States.,Charles Stark Draper Laboratory, Cambridge, MA, United States
| | - Evan R Matteson
- Brown University School of Engineering, Providence, RI, United States
| | - Anusha B Allawala
- Brown University School of Engineering, Providence, RI, United States
| | - Adriel Barrios-Anderson
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Elizabeth McIngvale
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Eric A Storch
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Michael J Frank
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, United States.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicole C R McLaughlin
- Psychiatric Neurosurgery Program at Butler Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey F Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wayne K Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David A Borton
- Brown University School of Engineering, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Veterans Affairs, Providence Medical Center, Center for Neurorestoration and Neurotechnology, Providence, RI, United States
| |
Collapse
|
29
|
Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive-compulsive disorder. Transl Psychiatry 2019; 9:73. [PMID: 30718450 PMCID: PMC6361948 DOI: 10.1038/s41398-019-0404-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/23/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Affective states underlie daily decision-making and pathological behaviours relevant to obsessive-compulsive disorders (OCD), mood disorders and addictions. Deep brain stimulation targeting the motor and associative-limbic subthalamic nucleus (STN) has been shown to be effective for Parkinson's disease (PD) and OCD, respectively. Cognitive and electrophysiological studies in PD showed responses of the motor STN to emotional stimuli, impairments in recognition of negative affective states and modulation of the intensity of subjective emotion. Here we studied whether the stimulation of the associative-limbic STN in OCD influences the subjective emotion to low-intensity positive and negative images and how this relates to clinical symptoms. We assessed 10 OCD patients with on and off STN DBS in a double-blind randomized manner by recording ratings of valence and arousal to low- and high-intensity positive and negative emotional images. STN stimulation increased positive ratings and decreased negative ratings to low-intensity positive and negative stimuli, respectively, relative to off stimulation. We also show that the change in severity of obsessive-compulsive symptoms pre- versus post-operatively interacts with both DBS and valence ratings. We show that stimulation of the associative-limbic STN might influence the negative cognitive bias in OCD and decreasing the negative appraisal of emotional stimuli with a possible relationship with clinical outcomes. That the effect is specific to low intensity might suggest a role of uncertainty or conflict related to competing interpretations of image intensity. These findings may have implications for the therapeutic efficacy of DBS.
Collapse
|
30
|
Pinhal CM, van den Boom BJG, Santana-Kragelund F, Fellinger L, Bech P, Hamelink R, Feng G, Willuhn I, Feenstra MGP, Denys D. Differential Effects of Deep Brain Stimulation of the Internal Capsule and the Striatum on Excessive Grooming in Sapap3 Mutant Mice. Biol Psychiatry 2018; 84:917-925. [PMID: 29954580 DOI: 10.1016/j.biopsych.2018.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for patients with obsessive-compulsive disorder (OCD) that do not respond to conventional therapies. Although the precise mechanism of action of DBS remains unknown, modulation of activity in corticofugal fibers originating in the prefrontal cortex is thought to underlie its beneficial effects in OCD. METHODS To gain more mechanistic insight into DBS in OCD, we used Sapap3 mutant mice. These mice display excessive self-grooming and increased anxiety, both of which are responsive to therapeutic drugs used in OCD patients. We selected two clinically relevant DBS targets through which activity in prefronto-corticofugal fibers may be modulated: the internal capsule (IC) and the dorsal part of the ventral striatum (dVS). RESULTS IC-DBS robustly decreased excessive grooming, whereas dVS-DBS was on average less effective. Grooming was reduced rapidly after IC-DBS onset and reinstated upon DBS offset. Only IC-DBS was associated with increased locomotion. DBS in both targets induced c-Fos expression around the electrode tip and in different regions of the prefrontal cortex. This prefronto-cortical activation was more extensive after IC-DBS, but not associated with behavioral effects. Furthermore, we found that the decline in grooming cannot be attributed to altered locomotor activity and that anxiety, measured on the elevated plus maze, was not affected by DBS. CONCLUSIONS DBS in both the IC and dVS reduces compulsive grooming in Sapap3 mutant mice. However, IC stimulation was more effective, but also produced motor activation, even though both DBS targets modulated activity in a similar set of prefrontal cortical fibers.
Collapse
Affiliation(s)
- Cindy M Pinhal
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Bastijn J G van den Boom
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fabiana Santana-Kragelund
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lizz Fellinger
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Pol Bech
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ralph Hamelink
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Matthijs G P Feenstra
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Damiaan Denys
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Franco RR, Fonoff ET, Alvarenga PG, Alho EJL, Lopes AC, Hoexter MQ, Batistuzzo MC, Paiva RR, Taub A, Shavitt RG, Miguel EC, Teixeira MJ, Damiani D, Hamani C. Assessment of Safety and Outcome of Lateral Hypothalamic Deep Brain Stimulation for Obesity in a Small Series of Patients With Prader-Willi Syndrome. JAMA Netw Open 2018; 1:e185275. [PMID: 30646396 PMCID: PMC6324383 DOI: 10.1001/jamanetworkopen.2018.5275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Deep brain stimulation (DBS) has been investigated for treatment of morbid obesity with variable results. Patients with Prader-Willi syndrome (PWS) present with obesity that is often difficult to treat. OBJECTIVE To test the safety and study the outcome of DBS in patients with PWS. DESIGN, SETTING, AND PARTICIPANTS This case series was conducted in the Hospital das Clínicas, University of São Paulo, Brazil. Four patients with genetically confirmed PWS presenting with severe obesity were included. EXPOSURE Deep brain stimulation electrodes were bilaterally implanted in the lateral hypothalamic area. After DBS implantation, the treatment included the following phases: titration (1-2 months), stimulation off (2 months), low-frequency DBS (40 Hz; 1 month), washout (15 days), high-frequency DBS (130 Hz; 1 month), and long-term follow-up (6 months). MAIN OUTCOMES AND MEASURES Primary outcome measures were adverse events recorded during stimulation and long-term DBS treatment. Secondary outcomes consisted of changes in anthropometric measures (weight, body mass index [calculated as weight in kilograms divided by height in meters squared], and abdominal and neck circumference), bioimpedanciometry, and calorimetry after 6 months of treatment compared with baseline. The following evaluations and measurements were conducted before and after DBS: clinical, neurological, psychiatric, neuropsychological, anthropometry, calorimetry, blood workup, hormonal levels, and sleep studies. Adverse effects were monitored during all follow-up visits. RESULTS Four patients with PWS were included (2 male and 2 female; ages 18-28 years). Baseline mean (SD) body mass index was 39.6 (11.1). Two patients had previous bariatric surgery, and all presented with psychiatric comorbidity, which was well controlled with the use of medications. At 6 months after long-term DBS, patients had a mean 9.6% increase in weight, 5.8% increase in body mass index, 8.4% increase in abdominal circumference, 4.2% increase in neck circumference, 5.3% increase in the percentage of body fat, and 0% change in calorimetry compared with baseline. Also unchanged were hormonal levels and results of blood workup, sleep studies, and neuropsychological evaluations. Two patients developed stimulation-induced manic symptoms. Discontinuation of DBS controlled this symptom in 1 patient. The other required adjustments in medication dosage. Two infections were documented, 1 associated with skin picking. CONCLUSIONS AND RELEVANCE Safety of lateral hypothalamic area stimulation was in the range of that demonstrated in patients with similar psychiatric conditions receiving DBS. In the small cohort of patients with PWS treated in our study, DBS was largely ineffective.
Collapse
Affiliation(s)
- Ruth R. Franco
- Children’s Institute, Division of Pediatric Endocrinology, University of São Paulo Medical School, São Paulo, Brazil
| | - Erich T. Fonoff
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Pedro G. Alvarenga
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Eduardo J. L. Alho
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio Carlos Lopes
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Q. Hoexter
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo C. Batistuzzo
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Raquel R. Paiva
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Anita Taub
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Roseli G. Shavitt
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Euripides C. Miguel
- Institute of Psychiatry, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Manoel J. Teixeira
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Durval Damiani
- Children’s Institute, Division of Pediatric Endocrinology, University of São Paulo Medical School, São Paulo, Brazil
| | - Clement Hamani
- Division of Functional Neurosurgery of Institute of Psychiatry, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
- Harquail Centre for Neuromodulation, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Dougherty DD, Brennan BP, Stewart SE, Wilhelm S, Widge AS, Rauch SL. Neuroscientifically Informed Formulation and Treatment Planning for Patients With Obsessive-Compulsive Disorder: A Review. JAMA Psychiatry 2018; 75:1081-1087. [PMID: 30140845 DOI: 10.1001/jamapsychiatry.2018.0930] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Obsessive-compulsive disorder (OCD) is a common and often debilitating psychiatric illness. Recent advances in the understanding of the neuroscience of OCD have provided valuable insights that have begun to transform the way we think about the management of this disorder. This educational review provides an integrated neuroscience perspective on formulation and treatment planning for patients with OCD. The article is organized around key neuroscience themes most relevant for OCD. OBSERVATIONS An integrated neuroscience formulation of OCD is predicated on a fundamental understanding of phenomenology and symptom dimensions, fear conditioning and extinction, neurochemistry, genetics and animal models, as well as neurocircuitry and neurotherapeutics. Symptom dimensions provide a means to better understand the phenotypic heterogeneity within OCD with an eye toward more personalized treatments. The concept of abnormal fear extinction is central to OCD and to the underlying therapeutic mechanism of exposure and response prevention. A framework for understanding the neurochemistry of OCD focuses on both traditional monoaminergic systems and more recent evidence of glutamatergic and γ-aminobutyric acid-ergic dysfunction. Obsessive-compulsive disorder is highly heritable, and future work is needed to understand the contribution of genes to underlying pathophysiology. A circuit dysregulation framework focuses on cortico-striato-thalamo-cortical circuit dysfunction and the development of neurotherapeutic approaches targeting this circuit. The impact of these concepts on how we think about OCD diagnosis and treatment is discussed. Suggestions for future investigations that have the potential to further enhance the clinical management of OCD are presented. CONCLUSIONS AND RELEVANCE These key neuroscience themes collectively inform formulation and treatment planning for patients with OCD. The ultimate goal is to increase crosstalk between clinicians and researchers in an effort to facilitate translation of advances in neuroscience research to improved care for patients with OCD.
Collapse
Affiliation(s)
- Darin D Dougherty
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Biological Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts
| | - S Evelyn Stewart
- BC Mental Health & Addictions Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sabine Wilhelm
- Obsessive-Compulsive and Related Disorders Program, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alik S Widge
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Picower Institute for Learning and Memory, Massachusetts Institute for Technology, Cambridge
| | - Scott L Rauch
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Widge AS, Malone DA, Dougherty DD. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression. Front Neurosci 2018; 12:175. [PMID: 29618967 PMCID: PMC5871707 DOI: 10.3389/fnins.2018.00175] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022] Open
Abstract
Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial “failures” are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this “valley of disillusionment,” DBS may be nearing a “slope of enlightenment.” Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Donald A Malone
- Department of Psychiatry, Cleveland Clinic, Cleveland, OH, United States
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C, Goodman W, Kumsa D, Grill WM, Walker HC, Johnson MD, Vitek JL, Greene D, Rizzuto DS, Song D, Berger TW, Hampson RE, Deadwyler SA, Hochberg LR, Schiff ND, Stypulkowski P, Worrell G, Tiruvadi V, Mayberg HS, Jimenez-Shahed J, Nanda P, Sheth SA, Gross RE, Lempka SF, Li L, Deeb W, Okun MS. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Front Neurosci 2018; 11:734. [PMID: 29416498 PMCID: PMC5787550 DOI: 10.3389/fnins.2017.00734] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States,*Correspondence: Adolfo Ramirez-Zamora
| | - James J. Giordano
- Department of Neurology, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Justin C. Sanchez
- Biological Technologies Office, Defense Advanced Research Projects Agency, Arlington, VA, United States
| | - Kelly D. Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Philip A. Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Helen M. Bronte-Stewart
- Departments of Neurology and Neurological Sciences and Neurosurgery, Stanford University, Stanford, CA, United States
| | - Wei Hu
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Cameron McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Wayne Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doe Kumsa
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Harrison C. Walker
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Daniel S. Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Sam A. Deadwyler
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Leigh R. Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States,Center for Neurorestoration and Neurotechnology, Rehabilitation R and D Service, Veterans Affairs Medical Center, Providence, RI, United States,School of Engineering and Brown Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nicholas D. Schiff
- Laboratory of Cognitive Neuromodulation, Feil Family Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Vineet Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Helen S. Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Joohi Jimenez-Shahed
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Pranav Nanda
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Sameer A. Sheth
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Beijing, China,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Wissam Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
Deep Brain Stimulation for Highly Refractory Depression. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Ramasubbu R, Lang S, Kiss ZHT. Dosing of Electrical Parameters in Deep Brain Stimulation (DBS) for Intractable Depression: A Review of Clinical Studies. Front Psychiatry 2018; 9:302. [PMID: 30050474 PMCID: PMC6050377 DOI: 10.3389/fpsyt.2018.00302] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/18/2018] [Indexed: 01/16/2023] Open
Abstract
Background: The electrical parameters used for deep brain stimulation (DBS) in movement disorders have been relatively well studied, however for the newer indications of DBS for psychiatric indications these are less clear. Based on the movement disorder literature, use of the correct stimulation parameters should be crucial for clinical outcomes. This review examines the stimulation parameters used in DBS studies for treatment resistant depression (TRD) and their relevance to clinical outcome and brain targets. Methods: We examined the published studies on DBS for TRD archived in major databases. Data on stimulus parameters (frequency, pulse width, amplitude), stimulation mode, brain target, efficacy, safety, and duration of follow up were extracted from 29 observational studies including case reports of patients with treatment resistant unipolar, bipolar, and co-morbid depression. Results: The algorithms commonly used to optimize efficacy were increasing amplitude followed by changing the electric contacts or increasing pulse width. High frequency stimulation (>100 Hz) was applied in most cases across brain targets. Keeping the high frequency stimulation constant, three different combinations of parameters were mainly used: (i) short pulse width (60-90 us) and low amplitude (0-4 V), (ii) short pulse width and high amplitude (5-10 V), (iii) long pulse width (120-450 us) and low amplitude. There were individual variations in clinical response to electrical dosing and also in the time of clinical recovery. There was no significant difference in mean stimulation parameters between responders and non-responders suggesting a role for stimulation unrelated factors in response. Conclusions: Although limited by open trials and small sample size, three optimal stimulation parameter combinations emerged from this review. Studies are needed to assess the comparative efficacy and safety of these combinations, such as a registry of data from patients undergoing DBS for TRD with individual data on stimulation parameters.
Collapse
Affiliation(s)
- Rajamannar Ramasubbu
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stefan Lang
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Department of Psychiatry and Clinical Neurosciences, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Abstract
Deep brain stimulation (DBS) is a promising putative modality for the treatment of refractory psychiatric disorders such as major depression and obsessive-compulsive disorder (OCD). Several targets have been posited; however, a clear consensus on differential efficacy and possible modes of action remain unclear. DBS to the supero-lateral branch of the medial forebrain bundle (slMFB) has recently been introduced for major depression (MD). Due to our experience with slMFB stimulation for MD, and because OCD might be related to similar dysfunctions of the reward system, treatment with slMFB DBS seams meaningful. Here we describe our first 2 cases together with a hypothetical mode of action. We describe diffusion tensor imaging (DTI) fiber tractographically (FT)-assisted implantation of the bilateral DBS systems in 2 male patients. In a selected literature overview, we discuss the possible mode of action. Both patients were successfully implanted and stimulated. The follow-up time was 12 months. One patient showed a significant response (Yale-Brown Obsessive-Compulsive Scale [YBOCS] reduction by 35%); the other patient reached remission criteria 3 months after surgery (YBOCS<14) and showed mild OCD just above the remission criterion at 12 months follow-up. While the hypermetabolism theory for OCD involves the cortico-striato-thalamo-cortical (CSTC) network, we think that there is clinical evidence that the reward system plays a crucial role. Our findings suggest an important role of this network in mechanisms of disease development and recovery. In this uncontrolled case series, continuous bilateral DBS to the slMFB led to clinically significant improvements of ratings of OCD severity. Ongoing research focuses on the role of the reward system in OCD, and its yet-underestimated role in this underlying neurobiology of the disease.
Collapse
|
38
|
Lo MC, Widge AS. Closed-loop neuromodulation systems: next-generation treatments for psychiatric illness. Int Rev Psychiatry 2017; 29:191-204. [PMID: 28523978 PMCID: PMC5461950 DOI: 10.1080/09540261.2017.1282438] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023]
Abstract
Despite deep brain stimulation's positive early results in psychiatric disorders, well-designed clinical trials have yielded inconsistent clinical outcomes. One path to more reliable benefit is closed-loop therapy: stimulation that is automatically adjusted by a device or algorithm in response to changes in the patient's electrical brain activity. These interventions may provide more precise and patient-specific treatments. This article first introduces the available closed-loop neuromodulation platforms, which have shown clinical efficacy in epilepsy and strong early results in movement disorders. It discusses the strengths and limitations of these devices in the context of psychiatric illness. It then describes emerging technologies to address these limitations, including pre-clinical developments such as wireless deep neurostimulation and genetically targeted neuromodulation. Finally, ongoing challenges and limitations for closed-loop psychiatric brain stimulation development, most notably the difficulty of identifying meaningful biomarkers for titration, are discussed. This is considered in the recently-released Research Domain Criteria (RDoC) framework, and how neuromodulation and RDoC are jointly very well suited to address the problem of treatment-resistant illness is described.
Collapse
Affiliation(s)
- Meng-Chen Lo
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Alik S. Widge
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
39
|
Klein E, Goering S, Gagne J, Shea CV, Franklin R, Zorowitz S, Dougherty DD, Widge AS. Brain-computer interface-based control of closed-loop brain stimulation: attitudes and ethical considerations. BRAIN-COMPUTER INTERFACES 2016. [DOI: 10.1080/2326263x.2016.1207497] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eran Klein
- Center for Sensorimotor Neural Engineering and Department of Philosophy, University of Washington, Seattle, WA, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Sara Goering
- Center for Sensorimotor Neural Engineering and Department of Philosophy, University of Washington, Seattle, WA, USA
| | - Josh Gagne
- Survey and Data Management Core, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Conor V. Shea
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel Franklin
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Samuel Zorowitz
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Darin D. Dougherty
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Alik S. Widge
- Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Boston, MA, USA
| |
Collapse
|
40
|
|
41
|
Satzer D, Bond DJ. Mania secondary to focal brain lesions: implications for understanding the functional neuroanatomy of bipolar disorder. Bipolar Disord 2016; 18:205-20. [PMID: 27112231 DOI: 10.1111/bdi.12387] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Approximately 3.5 million Americans will experience a manic episode during their lifetimes. The most common causes are psychiatric illnesses such as bipolar I disorder and schizoaffective disorder, but mania can also occur secondary to neurological illnesses, brain injury, or neurosurgical procedures. METHODS For this narrative review, we searched Medline for articles on the association of mania with stroke, brain tumors, traumatic brain injury, multiple sclerosis, neurodegenerative disorders, epilepsy, and neurosurgical interventions. We discuss the epidemiology, features, and treatment of these cases. We also review the anatomy of the lesions, in light of what is known about the neurobiology of bipolar disorder. RESULTS The prevalence of mania in patients with brain lesions varies widely by condition, from <2% in stroke to 31% in basal ganglia calcification. Mania occurs most commonly with lesions affecting frontal, temporal, and subcortical limbic brain areas. Right-sided lesions causing hypo-functionality or disconnection (e.g., stroke; neoplasms) and left-sided excitatory lesions (e.g., epileptogenic foci) are frequently observed. CONCLUSIONS Secondary mania should be suspected in patients with neurological deficits, histories atypical for classic bipolar disorder, and first manic episodes after the age of 40 years. Treatment with antimanic medications, along with specific treatment for the underlying neurologic condition, is typically required. Typical lesion locations fit with current models of bipolar disorder, which implicate hyperactivity of left-hemisphere reward-processing brain areas and hypoactivity of bilateral prefrontal emotion-modulating regions. Lesion studies complement these models by suggesting that right-hemisphere limbic-brain hypoactivity, or a left/right imbalance, may be relevant to the pathophysiology of mania.
Collapse
Affiliation(s)
- David Satzer
- Medical School, University of Minnesota, Minneapolis, MN, USA
| | - David J Bond
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|