1
|
Thomson M, Sharma V. Can pharmacotherapy help to reduce trichotillomania? Expert Rev Neurother 2024; 24:1041-1043. [PMID: 39230087 DOI: 10.1080/14737175.2024.2398471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Michael Thomson
- Department of Psychiatry, Western University, London, Canada
| | - Verinder Sharma
- Departments of Psychiatry and Obstetrics and Gynecology, Western University, London, Canada
| |
Collapse
|
2
|
Dougherty DD, Peters AT, Grant JE, Peris TS, Ricketts EJ, Migó M, Chou T, O'Neill J, Stein DJ, Lochner C, Keuthen N, Piacentini J, Deckersbach T. Neural Basis of Associative Learning in Trichotillomania and Skin-Picking Disorder. Behav Brain Res 2022; 425:113801. [PMID: 35183617 PMCID: PMC8940679 DOI: 10.1016/j.bbr.2022.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Disorders such as Trichotillomania (TTM) and skin-picking disorder (SPD) are associated with reduced flexibility and increased internally focused attention. While the basal ganglia have been hypothesized to play a key role, the mechanisms underlying learning and flexible accommodation of new information is unclear. Using a Bayesian Learning Model, we evaluated the neural basis of learning and accommodation in individuals with TTM and/or SPD. Participants were 127 individuals with TTM and/or SPD (TTM/SPD) recruited from three sites (age 18-57, 84% female) and 26 healthy controls (HC). During fMRI, participants completed a shape-button associative learning and reversal fMRI task. Above-threshold clusters were identified where the Initial Learning-Reversals BOLD activation contrast differed significantly (p < .05 FDR-corrected) between the two groups. A priori, effects were anticipated in predefined ROIs in bilateral basal ganglia, with exploratory analyses in the hippocampus, dorsolateral prefrontal cortex (dlPFC), and dorsal anterior cingulate cortex (dACC). Relative to HC, individuals with TTM/SPD demonstrated reduced activation during initial learning compared to reversal learning in the right basal ganglia. Similarly, individuals with TTM/SPD demonstrated reduced activation during initial learning compared to reversal learning in several clusters in the dlPFC and dACC compared to HC. Individuals with TTM/SPD may form or reform visual stimulus-motor response associations through different brain mechanisms than healthy controls. The former exhibit altered activation within the basal ganglia, dlPFC, and dACC during an associative learning task compared to controls, reflecting reduced frontal-subcortical activation during initial learning. Future work should determine whether these neural deficits may be restored with targeted treatment.
Collapse
Affiliation(s)
- Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States.
| | - Amy T Peters
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Tara S Peris
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Marta Migó
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Joseph O'Neill
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Nancy Keuthen
- Department of Psychiatry, Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| | - Thilo Deckersbach
- Psychology Program, University of Applied Sciences Europe, Berlin, Germany
| |
Collapse
|
3
|
Abstract
Trichotillomania (hair pulling disorder) and skin picking disorder are common and often debilitating mental health conditions, grouped under the umbrella term of body focused repetitive behaviors (BFRBs). Although the pathophysiology of BFRBs is incompletely understood, reward processing dysfunction has been implicated in the etiology and sustention of these disorders. The purpose of this study was to probe reward processing in BFRBs. 159 adults (125 with a BFRB [83.2% (n = 104) female] and 34 healthy controls [73.5% (n = 25) female]) were recruited from the community for a multi-center between-group comparison using a functional imaging (fMRI) monetary reward task. Differences in brain activation during reward anticipation and punishment anticipation were compared between BFRB patients and controls, with stringent correction for multiple comparisons. All group level analyses controlled for age, sex and scanning site. Compared to controls, BFRB participants showed marked hyperactivation of the bilateral inferior frontal gyrus (pars opercularis and pars triangularis) compared to controls. In addition, BFRB participants exhibited increased activation in multiple areas during the anticipation of loss (right fusiform gyrus, parahippocampal gyrus, cerebellum, right inferior parietal lobule; left inferior frontal gyrus). There were no significant differences in the win-lose contrast between the two groups. These data indicate the existence of dysregulated reward circuitry in BFRBs. The identified pathophysiology of reward dysfunction may be useful to tailor future treatments.
Collapse
|
4
|
Duration of illness and cortical thickness in trichotillomania: Preliminary evidence for illness change over time. Eur Neuropsychopharmacol 2020; 32:88-93. [PMID: 31954616 PMCID: PMC7058414 DOI: 10.1016/j.euroneuro.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 11/21/2022]
Abstract
Trichotillomania is a psychiatric condition characterized by repetitive pulling out of one's hair, leading to marked functional impairment. The aim of this study was to examine the association between duration of trichotillomania (defined as time between initial age of onset and current age) and structural brain abnormalities by pooling all available global data. Authors of published neuroimaging studies of trichotillomania were contacted and invited to contribute de-identified MRI scans for a pooled analysis. Freesurfer pipelines were used to examine whether cortical thickness and sub-cortical volumes were associated with duration of illness in adults with trichotillomania. The sample comprised 50 adults with trichotillomania (100% not taking psychotropic medication; mean [SD] age 34.3 [12.3] years; 92% female). Longer duration of illness was associated with lower cortical thickness in bilateral superior frontal cortex and left rostral middle frontal cortex. Volumes of the a priori sub-cortical structures of interest were not significantly correlated with duration of illness (all p > 0.05 uncorrected). This study is the first to suggest that trichotillomania is associated with biological changes over time. If this finding is supported by prospective studies, it could have important implications for treatment (i.e. treatment might need to be tailored for stage of illness). Viewed alongside prior work, the data suggest that brain changes in trichotillomania may be differentially associated with vulnerability (excess thickness in right inferior frontal cortex) and with chronicity (reduced thickness in medial and superior frontal cortex). Longitudinal research is now indicated.
Collapse
|
5
|
Lamothe H, Baleyte JM, Mallet L, Pelissolo A. Trichotillomania is more related to Tourette disorder than to obsessive-compulsive disorder. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:87-104. [PMID: 31576938 PMCID: PMC6986481 DOI: 10.1590/1516-4446-2019-0471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/08/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Trichotillomania (TTM) is characterized by the pulling out of one's hair. TTM was classified as an impulse control disorder in DSM-IV, but is now classified in the obsessive-compulsive related disorders section of DSM-5. Classification for TTM remains an open question, especially considering its impact on treatment of the disorder. In this review, we questioned the relation of TTM to tic disorder and obsessive-compulsive disorder (OCD). METHOD We reviewed relevant MEDLINE-indexed articles on clinical, neuropsychological, neurobiological, and therapeutic aspects of trichotillomania, OCD, and tic disorders. RESULTS Our review found a closer relationship between TTM and tic disorder from neurobiological (especially imaging) and therapeutic standpoints. CONCLUSION We sought to challenge the DSM-5 classification of TTM and to compare TTM with both OCD and tic disorder. Some discrepancies between TTM and tic disorders notwithstanding, several arguments are in favor of a closer relationship between these two disorders than between TTM and OCD, especially when considering implications for therapy. This consideration is essential for patients.
Collapse
Affiliation(s)
- Hugues Lamothe
- Centre Hospitalier Intercommunal de Créteil, Université Paris Est Créteil, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
| | - Jean-Marc Baleyte
- Centre Hospitalier Intercommunal de Créteil, Université Paris Est Créteil, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
- Université de Caen Normandie (UNICAEN), INSERM, U1077, Caen, France
| | - Luc Mallet
- Fondation FondaMental, Créteil, France
- Assistance Publique Hôspitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor Albert Chenevier, Université Paris Est Créteil, Créteil, France
- Department of Mental Health and Psychiatry, Geneva University Hospital, University of Geneva, Geneva, Switzerland
- Unité Mixte de Recherche (UMR) S1127, Centre National de la Recherche Scientifique (CNRS), UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Antoine Pelissolo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Créteil, France
- Fondation FondaMental, Créteil, France
- Assistance Publique Hôspitaux de Paris (APHP), Hôpitaux Universitaires Henri Mondor Albert Chenevier, Université Paris Est Créteil, Créteil, France
| |
Collapse
|