1
|
Zhu M, Cao M, Li S, Wang B, Zhu G, Yao J, Jiang C. Impact of Soft Palate Extension and Elevation on Pharyngeal Airflow in Cleft Palate Patients: A Computational Fluid Dynamics Study. J Craniofac Surg 2025:00001665-990000000-02728. [PMID: 40367494 DOI: 10.1097/scs.0000000000011478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/05/2025] [Indexed: 05/16/2025] Open
Abstract
The aim of the study was to investigate the changes in pharyngeal airflow pressure and velocity in cleft palate patients following palatoplasty with different soft palate lengths and heights using computational fluid dynamics (CFD) analysis. A pathological model of velopharyngeal insufficiency was developed based on computed tomography data from patients with cleft palate. Computational fluid dynamics analysis was performed to simulate soft palate extension and elevation during palatoplasty, and the aerodynamic characteristics of the upper airway and the impact of these modifications on velopharyngeal closure were analyzed. During phonation, airflow velocity in the oropharynx increased above the soft palate and was higher than that below the soft palate when extension was simulated. The maximum airflow velocity was observed in the oropharyngeal airway above the soft palate. However, variations in maximum pressure, minimum pressure, and maximum pressure difference in the upper airway were not correlated with soft palate extension. In contrast, with soft palate elevation, airflow velocity above the soft palate in the oropharynx increased, while airflow velocity below the soft palate in the oral cavity decreased. The airflow pressure below the soft palate remained consistently higher than that above the soft palate in the oropharynx. Both soft palate extension and elevation influence airflow velocity and pressure in the upper airway. However, elevation was more effective in achieving velopharyngeal closure than extension. Computational fluid dynamics analysis could serve as a valuable tool for the virtual design of surgical interventions and for predicting postoperative outcomes in palatoplasty.
Collapse
Affiliation(s)
- Mengxian Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine
| | - Minyue Cao
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine
| | - Binbing Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine
| | - Guiping Zhu
- Nanjing University of Aeronautics and Astronautics,Nanjing, China
| | - Jiafeng Yao
- Nanjing University of Aeronautics and Astronautics,Nanjing, China
| | - Chenghui Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine
| |
Collapse
|
2
|
Lanrui L, Changjiang D, Xia Z, Shuang Y, Hongping Z, Zhigang C. Construction of virtual airway model to assist surgical correction of velopharyngeal insufficiency with posterior pharyngeal flap. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102099. [PMID: 39357808 DOI: 10.1016/j.jormas.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Posterior pharyngeal flap (PPF) is one of the most common surgical technique to correct velopharyngeal insufficiency(VPI), during which controlling the sizes of the lateral pharyngeal ports(LPP) is the key to outcomes. One innovative procedure was developed to well control the size of LPP. MATERIALS AND METHODS 40 patients with repaired cleft palate were collected from June 2022 to August 2023. All patients were diagnosed with VPI, and treated with modified PPF surgery. For each patient, upper airway model was reconstructed, and the virtual airway model of PPF was designed. The nasal valve area was measured as it was considered to be the narrowest part of the upper airway. The upper airway resistances under different sizes of LPP was predicted through computational fluid dynamics analysis. The minimum size of each lateral pharyngeal port without obviously increase of upper airway resistance was calculated through effect of lateral pharyngeal ports' size on upper airway resistance. Postoperative follow-up was 6-18 months, including speech outcome and respiration outcome. Resting soft palate length (RVL), effective working length of soft palate (EWL) and angle of soft palate elevation (AVL) were measured and compared according to the lateral cephalometric radiograph. RESULTS There was a linear relationship between the threshold value and nasal valve (R = 0.62). Among the forty patients, the average size of nasal valve was 47.81 mm2, the average size of the threshold value of LPP was 31.63mm2. The proportion of velopharyngeal closure competence after surgery was 95 %. Compared with the preoperative measurements, there were significantly increase of RVL, EWL and AVL (P < 0.05). There were significantly difference in the nasal obstruction symptom evaluation score in long-term follow-up compared to short-term follow-up (P < 0.05), and no one needed flap revision. There was no significant difference in nasal respiration and nasal resistance before and after surgery (P > 0.05). CONCLUSION With the help of computer fluid dynamics analysis, it is possible to predict the threshold size of lateral pharyngeal port without obviously increasing upper airway resistance and reduce the risk of suffering from airway obstruction for patients undergoing PPF surgery.
Collapse
Affiliation(s)
- Luo Lanrui
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Du Changjiang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Zhou Xia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yang Shuang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Zhu Hongping
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| | - Cai Zhigang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
3
|
Huang H, Zheng O, Wang D, Yin J, Wang Z, Ding S, Yin H, Xu C, Yang R, Zheng Q, Shi B. ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model. Int J Oral Sci 2023; 15:29. [PMID: 37507396 PMCID: PMC10382494 DOI: 10.1038/s41368-023-00239-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry, including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially, equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and treatment, which indicates a promising avenue for clinical application and research in dentistry.
Collapse
Affiliation(s)
- Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ou Zheng
- Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, USA.
| | - Dongdong Wang
- Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, USA
| | - Jiayi Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zijin Wang
- Department of Civil, Environmental & Construction Engineering, University of Central Florida, Orlando, USA
| | - Shengxuan Ding
- College of Transportation Engineering, University of Central Florida, Orlando, USA
| | - Heng Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuan Xu
- School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China
- C2SMART Center, Tandon School of Engineering, New York University, Brooklyn, USA
| | - Renjie Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Yang C, Li J, Li H, Chen N, Yin X, Shi B, Li J, Huang H. Inspiration After Posterior Pharyngeal Flap Palatoplasty: A Preliminary Study Using Computational Fluid Dynamic Analysis. Front Pediatr 2022; 10:823777. [PMID: 35592839 PMCID: PMC9111012 DOI: 10.3389/fped.2022.823777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior pharyngeal flap palatoplasty (PPF) is one of the most commonly used surgical procedures to correct speech, especially for patients suffering from velopharyngeal insufficiency (VPI). During PPF, surgeons use the catheter to control the lateral velopharyngeal port on each side. Airway obstruction and sleep apnea are common after PPF. To understand the air dynamics of the upper airway after PPF, we used computational fluid dynamics (CFD) to demonstrate the airflow. In our previous study, we have revealed the expiration process of the upper airway after PPF and shown the features of how PPF successfully restores the oral pressure for speech. In this study, we focus on examining the inspiration process. Normal airway structures were included. For the normal velopharyngeal structure, one cylinder was applied to each model. For recapitulating the velopharyngeal structure after PPF, two cylinders were used in each model. The ports for borderline/inadequate closure, which can help the oral cavity get the required pressure, were chosen for this study. A real-time CFD simulation was used to capture the airflow through the ports. We found that the airflow dynamics of the upper airway's inspiration were dependent on the velopharyngeal structure. Although the airflow patterns were similar, the velocities between one-port and two-port structures were different, which explained why patients after PPF breathed harder than before and suggested that the one-port structure might be a better choice for secondary VPI reconstruction based on the CFD analyses.
Collapse
Affiliation(s)
- Chao Yang
- Department of Oral Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiang Li
- The Third People's Hospital of Chengdu, Clinical College of Southwest Jiaotong University, The Second Affiliated Chengdu Hospital, Chongqing Medical University, Chengdu, China
| | - Huo Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory, Sichuan Province Sichuan Academy, Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nan Chen
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xing Yin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- Department of Oral Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingtao Li
- Department of Oral Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyao Huang
- Department of Oral Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Airflow of the Two-Port Velopharyngeal Closure: Study Using Computational Fluid Dynamics. J Craniofac Surg 2021; 31:2188-2192. [PMID: 33136852 DOI: 10.1097/scs.0000000000006772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Posterior pharyngeal flap palatoplasty is used to restore the function of velopharyngeal (VP) closure, after which 2 ports remain between the nasal and oral cavity. The authors hypothesized that the airflow dynamics of the upper airway is different in PPF patients compared to health subjects, who only has 1 movable port. Twenty adults who have multislice spiral computed tomography scan were included in this study. Two cylinders (radius, 2.00 mm; height, 4.5 mm) were used to recapitulate the 2-port VP structure after PPF palatoplasty. The areas of ports were modified by changing the radius of 2 cylinders. Real-time computational fluid dynamics simulation was used to capture the airflow velocity and pressures through the 2 ports. The airflow velocity and pressure of upper airway were recorded as the total areas of 2 VP ports increased. The total orifice areas of the 2-port VP closure for 4 VP conditions, including adequate closure, adequate/borderline closure, borderline/inadequate closure, and inadequate closure, were demonstrated. Significant differences between the 2-port VP function for demonstrating PPF reconstruction and the 1-port VP function were found. Airflow dynamics is dependent on the VP structure. The 2-port airflow model for mimicking VP closure after PPF palatoplasty demonstrated airflow characteristics that were significantly different from the 1-port model in normal VP closure.
Collapse
|
6
|
Shi B, Huang H. Computational technology for nasal cartilage-related clinical research and application. Int J Oral Sci 2020; 12:21. [PMID: 32719336 PMCID: PMC7385163 DOI: 10.1038/s41368-020-00089-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
Surgeons need to understand the effects of the nasal cartilage on facial morphology, the function of both soft tissues and hard tissues and nasal function when performing nasal surgery. In nasal cartilage-related surgery, the main goals for clinical research should include clarification of surgical goals, rationalization of surgical methods, precision and personalization of surgical design and preparation and improved convenience of doctor-patient communication. Computational technology has become an effective way to achieve these goals. Advances in three-dimensional (3D) imaging technology will promote nasal cartilage-related applications, including research on computational modelling technology, computational simulation technology, virtual surgery planning and 3D printing technology. These technologies are destined to revolutionize nasal surgery further. In this review, we summarize the advantages, latest findings and application progress of various computational technologies used in clinical nasal cartilage-related work and research. The application prospects of each technique are also discussed.
Collapse
Affiliation(s)
- Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
7
|
Huang H, Yin H, Wang Y, Chen N, Huang D, Luo X, Yin X, Zheng Q, Shi B, Li J. Computational Fluid Dynamic Analysis of Different Velopharyngeal Closure Patterns. Ann Otol Rhinol Laryngol 2019; 129:157-163. [PMID: 31569953 DOI: 10.1177/0003489419879176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: Velopharyngeal (VP) closure has high impact on the quality of life, especially in patients with cleft palate. For better understanding the VP closure, it is important to understand the airflow dynamics of different closure patterns, including circular, coronal, sagittal, and circular with a Passavant’s ridge. The purpose of this study was to demonstrate the airflow characteristics of different velopharyngeal closure patterns. Methods: Sixteen adults with no notable upper airway abnormality who needed multislice spiral computed tomography scans as part of their clinical care. Airways were reconstructed. A cylinder and a cuboid were used to replace the VP port in three models of VP port patterns. Flow simulations were carried using computational fluid dynamics. Airflow pressures in the VP orifice, oral cavity and nasal cavity, as well as airflow velocity through the velopharyngeal orifice, were calculated. Results: The airflow dynamics at the velopharynx were different among different velopharyngeal patterns as the area of the velopharyngeal port increased from 0 to 25 mm2. The orifice areas of different closure conditions in four velopharyngeal closure patterns were significantly different. The maximal orifice area for adequate velopharyngeal closure was 7.57 mm2 in the coronal pattern and 6.21 mm2 in the sagittal pattern. Conclusions: Airflow dynamics of the velopharynx were correlated to the velopharyngeal closure patterns. Different closure patterns had different largest permitted orifice areas for getting the appropriate oral pressures for normal speech.
Collapse
Affiliation(s)
- Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Heng Yin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children and Office of Educational Administration, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|