1
|
Kumar P, Nesakumar N, Vedantham S, Balaguru Rayappan JB. An immunosensor for the detection of N-(carboxymethyl)lysine - a diabetic biomarker. RSC Adv 2025; 15:14375-14384. [PMID: 40330040 PMCID: PMC12053838 DOI: 10.1039/d5ra00968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Carboxymethyl-lysine (CML) is a well-known lysine product that strongly correlates with type 2 diabetes mellitus (T2DM), and its elevated levels are significantly associated with renal impairment and T2DM-related complications. Thus, it is imperative to quantify CML levels and recognize the onset of hyperglycemia and its consequences. In this context, the development of an electrochemical immunosensor for the rapid and ultralow-level detection of CML was attempted. The fabrication of the working electrode involves the covalent immobilization of anti-CML/EDC-NHS on the surface of a carbon quantum dot (CQD)-modified glassy carbon electrode (GCE). The immunosensor exhibited two discrete linear concentration ranges of 0.5-5.0 ng mL-1 and 5.5-10.0 ng mL-1, with limits of detection and quantification of 0.027 and 0.087 ng mL-1 and 0.16 and 0.51 ng mL-1, respectively. The observed specificity and other merits of the sensor make it suitable for testing human plasma samples.
Collapse
Affiliation(s)
- Priyanga Kumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India +91 4362 264 120 +91 4362 350009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur 613 401 India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University Thanjavur 613 401 India
| | - Srinivasan Vedantham
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University Thanjavur 613 401 India
- DifGen Pharmaceuticals Private Ltd Hyderabad India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed University Thanjavur Tamil Nadu 613 401 India +91 4362 264 120 +91 4362 350009. ext. 2255
- School of Electrical & Electronics Engineering (SEEE), SASTRA Deemed University Thanjavur 613 401 India
| |
Collapse
|
2
|
Nobert S, Wolgien-Lowe H, Davis T, Paterson E, Wilson-Rawlins T, Golizeh M. Assessing metal-induced glycation in French fries. Metallomics 2025; 17:mfae059. [PMID: 39737723 PMCID: PMC11704954 DOI: 10.1093/mtomcs/mfae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper. In this study, the effect of iron and copper on the rate and outcome of non-enzymatic glycation was examined in the test tube and a food model, using chromatography and spectrometry methods. Binding efficiencies of several chelating agents to selected metals were also assessed. Phytic acid was the most efficient of the tested chelating agents. The effect of phytic acid on AGE formation in French fries was evaluated. While phytic acid treatment increased the amounts of UV-absorbing compounds in fries, a food ingredient rich in phytic acid showed the opposite effect. This study suggests that prooxidant metals can affect the rate, outcome, and yield of the non-enzymatic glycation reaction and that they do so differently when free or chelated. Moreover, despite being an excellent iron chelator, phytic acid can promote AGE formation in fried food potentially via mechanisms other than metal-induced glycation.
Collapse
Affiliation(s)
- Seth Nobert
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Haley Wolgien-Lowe
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Tamara Davis
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Emma Paterson
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Thérèse Wilson-Rawlins
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Makan Golizeh
- Department of Environmental and Physical Sciences, Faculty of Science, Concordia University of Edmonton, Edmonton, Alberta, Canada
- Metals in Environment and Health (MEH) Research Cluster, Concordia University of Edmonton, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Skrajewski-Schuler LA, Soule LD, Geiger M, Spence D. UPLC-MS/MS method for quantitative determination of the advanced glycation endproducts Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6698-6705. [PMID: 38047493 PMCID: PMC10720951 DOI: 10.1039/d3ay01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
During blood storage, red blood cells (RBCs) undergo physical, chemical, and metabolic changes that may contribute to post-transfusion complications. Due to the hyperglycemic environment of typical solutions used for RBC storage, the formation of advanced glycation endproducts (AGEs) on the stored RBCs has been implicated as a detrimental chemical change during storage. Unfortunately, there are limited studies involving quantitative determination and differentiation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), two commonly formed AGEs, and no reported studies comparing these AGEs in experimental storage solutions. In this study, CML and CEL were identified and quantified on freshly drawn blood samples in two types of storage solutions, standard additive solution 1 (AS-1) and a normoglycemic version of AS-1 (AS-1N). To facilitate detection of the AGEs, a novel method was developed to reliably extract AGEs from RBCs, provide Food and Drug Administration (FDA) bioanalytical guidance criteria, and enable acceptable selectivity for these analytes. Ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify and quantify the AGEs. Results show this method is accurate, precise, has minimal interferences or matrix effects, and overcomes the issue of detecting AGE byproducts. Importantly, AGEs can be detected and quantified in both types of blood storage solutions (AS-1 and AS-1N), thereby enabling long-term (6 weeks) blood storage related studies.
Collapse
Affiliation(s)
- Lauren A Skrajewski-Schuler
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
| | - Logan D Soule
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Morgan Geiger
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana Spence
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP, Mau T, Maes M, Moritz R, Niedernhofer LJ, Van Schaftingen E, Tranah GJ, Walsh K, Yura Y, Zhang B, Cummings SR. Molecular Damage in Aging. NATURE AGING 2021; 1:1096-1106. [PMID: 36846190 PMCID: PMC9957516 DOI: 10.1038/s43587-021-00150-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Cellular metabolism generates molecular damage affecting all levels of biological organization. Accumulation of this damage over time is thought to play a central role in the aging process, but damage manifests in diverse molecular forms complicating its assessment. Insufficient attention has been paid to date to the role of molecular damage in aging-related phenotypes, particularly in humans, in part because of the difficulty in measuring its various forms. Recently, omics approaches have been developed that begin to address this challenge, because they are able to assess a sizeable proportion of age-related damage at the level of small molecules, proteins, RNA, DNA, organelles and cells. This review describes the concept of molecular damage in aging and discusses its diverse aspects from theoretical models to experimental approaches. Measurement of multiple types of damage enables studies of the role of damage in human aging outcomes and lays a foundation for testing interventions to reduce the burden of molecular damage, opening new approaches to slowing aging and reducing its consequences.
Collapse
Affiliation(s)
- Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Moritz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Emile Van Schaftingen
- De Duve Institute, Université catholique de Louvain, Bruxelles, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Bruxelles, Belgium
| | - Gregory J. Tranah
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Korwar AM, Zhang Q. Comprehensive Quantification of Carboxymethyllysine-Modified Peptides in Human Plasma. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:744-752. [PMID: 33512994 PMCID: PMC8075102 DOI: 10.1021/jasms.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A prolonged hyperglycemic condition in diabetes mellitus results in glycation of plasma proteins. N(ε)-Carboxymethyllysine (CML) is a well-known protein advanced glycation end product, and one of its mechanisms of formation is through further oxidation of Amadori compound modified lysine (AML). Unlike enrichment of AML peptides using boronate affinity, biochemical enrichment methods are scarce for comprehensive profiling of CML-modified peptides. To address this problem, we used AML peptide sequence and site of modification as template library to identify and quantify CML peptides. In this study, a parallel reaction monitoring workflow was developed to comprehensively quantify CML modified peptides in Type 1 diabetic subjects' plasma with good and poor glycemic control (n = 20 each). A total of 58 CML modified peptides were quantified, which represented 57 CML modification sites in 19 different proteins. Out of the 58 peptides, five were significantly higher in poor glycemic control samples with the area under the receiver operating characteristic curve ≥0.83. These peptides could serve as promising indicators of glycemic control in Type 1 diabetes management.
Collapse
Affiliation(s)
- Arvind M. Korwar
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
- Corresponding author: Dr. Qibin Zhang, UNCG Center for Translational Biomedical Research, 600 Laureate Way, Kannapolis, NC 28081,
| |
Collapse
|
6
|
O’Grady KL, Khosla S, Farr JN, Bondar OP, Atkinson EJ, Achenbach SJ, Eckhardt BA, Thicke BS, Tweed AJ, Volkman TL, Drake MT, Hines JM, Singh RJ. Development and Application of Mass Spectroscopy Assays for Nε-(1-Carboxymethyl)-L-Lysine and Pentosidine in Renal Failure and Diabetes. J Appl Lab Med 2020; 5:558-568. [PMID: 32445362 PMCID: PMC7192546 DOI: 10.1093/jalm/jfaa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are formed via the nonenzymatic glycation of sugars with amino acids. Two AGEs, Nε-(1-carboxymethyl)-L-Lysine (CML) and pentosidine, have been observed to be elevated in subjects suffering from a multitude of chronic disease states, and accumulation of these compounds may be related to the pathophysiology of disease progression and aging. METHODS We describe here the development and validation of a specific and reproducible LC-MS/MS method to quantify CML and pentosidine in human serum with lower limits of quantitation of 75 ng/mL and 5 ng/mL, respectively. The analyte calibration curve exhibited excellent linearity at a range of 0-10 900 ng/mL for CML and 0-800 ng/mL for pentosidine. High-low linearity of 5 serum pairs was assessed, with a mean recovery of 103% (range 94-116%) for CML, and 104% (range 97-116%) for pentosidine. RESULTS Serum concentrations of CML and pentosidine were quantified in 30 control and 30 subjects with chronic renal insufficiency. A significant increase in both analytes was observed in renal failure compared to control subjects (2.1-fold and 8.4-fold, respectively; P < 0.001 for both). In a separate cohort of 49 control versus 95 subjects with type 2 diabetes mellitus (T2DM), serum CML but not serum pentosidine, was significantly elevated in the T2DM patients, and CML was also correlated with glycemic control, as assessed by hemoglobin A1c (r = 0.34, P < 0.001). CONCLUSIONS These mass spectroscopy-based assays for serum CML and pentosidine should be useful in accurately evaluating circulating levels of these key AGEs in various disease states.
Collapse
Affiliation(s)
| | - Sundeep Khosla
- Mayo Clinic College of Medicine, Rochester, MN
- Address correspondence to: S.K. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax: 507-293-3853; e-mail . R.J.S. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax 507-293-3853; e-mail
| | | | | | | | | | | | | | | | | | | | | | - Ravinder J Singh
- Mayo Clinic College of Medicine, Rochester, MN
- Address correspondence to: S.K. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax: 507-293-3853; e-mail . R.J.S. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax 507-293-3853; e-mail
| |
Collapse
|