1
|
Krause S, Torok D, Bagdy G, Juhasz G, Gonda X. Genome-wide by trait interaction analyses with neuroticism reveal chronic pain-associated depression as a distinct genetic subtype. Transl Psychiatry 2025; 15:108. [PMID: 40157903 PMCID: PMC11954882 DOI: 10.1038/s41398-025-03331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
The frequent co-occurrence of chronic pain (CP) and depression is a well-known phenomenon, supported by both the high prevalence of major depression among CP patients and studies describing a substantial genetic correlation between the two phenotypes. Neuroticism, a trait characterised by maladaptive stress responses and a tendency to experience negative emotions, has been linked to both depression and the experience of pain. This study aimed to determine whether depression associated with CP represents a genetically distinct subtype and to explore the role of neuroticism in modulating genetic susceptibility to depression. To address these questions, we performed genome-wide association analyses for current depression utilising the UK Biobank dataset, followed by genome-wide by trait interaction analyses to assess the interaction effect of neuroticism, and polygenic risk score analyses to compare predictions. Our findings suggest that CP-related depression is a valid subtype of depression. In association with current depression, we identified a total of 49 novel genetic risk polymorphisms meeting the genome-wide significance threshold, including variants involved in synaptic plasticity and transcriptional regulation. Additionally, our results support that neuroticism has a prominent role in modulating the genetic risk of current depression independently of CP, which highlights the importance of considering personality traits and stress factors in understanding the genetic background of complex and heterogeneous phenotypes like depression.
Collapse
Grants
- National Research, Development and Innovation Office, Hungary (2019-2.1.7-ERA-NET-2020-00005), under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25
- Sandor Krause was supported by the ÚNKP-23-3-I-SE-73 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.
- Dora Torok is supported by EKÖP-2024-68.
- Gyorgy Bagdy was supported by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25.
- Gabriella Juhasz was supported by the National Research, Development and Innovation Office, Hungary (2019-2.1.7-ERA-NET-2020-00005), under the frame of ERA PerMed (ERAPERMED2019-108); by the Hungarian Brain Research Program (Grant: 2017-1.2.1-NKP-2017-00002; NAP2022-I-4/2022); KTIA_13_NAPA-II/14; KTIA_NAP_13-1-2013- 0001; KTIA_NAP_13-2- 2015-0001; NAP2022-I-4/2022; by the Ministry of Innovation and Technology of Hungary, Development and Innovation Fund, under TKP2021-EGA-25.
Collapse
Affiliation(s)
- Sandor Krause
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary.
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
- Center of Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
- Department of Clinical Psychology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Sharew NT, Clark SR, Schubert KO, Amare AT. Pharmacogenomic scores in psychiatry: systematic review of current evidence. Transl Psychiatry 2024; 14:322. [PMID: 39107294 PMCID: PMC11303815 DOI: 10.1038/s41398-024-02998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
In the past two decades, significant progress has been made in the development of polygenic scores (PGSs). One specific application of PGSs is the development and potential use of pharmacogenomic- scores (PGx-scores) to identify patients who can benefit from a specific medication or are likely to experience side effects. This systematic review comprehensively evaluates published PGx-score studies in psychiatry and provides insights into their potential clinical use and avenues for future development. A systematic literature search was conducted across PubMed, EMBASE, and Web of Science databases until 22 August 2023. This review included fifty-three primary studies, of which the majority (69.8%) were conducted using samples of European ancestry. We found that over 90% of PGx-scores in psychiatry have been developed based on psychiatric and medical diagnoses or trait variants, rather than pharmacogenomic variants. Among these PGx-scores, the polygenic score for schizophrenia (PGSSCZ) has been most extensively studied in relation to its impact on treatment outcomes (32 publications). Twenty (62.5%) of these studies suggest that individuals with higher PGSSCZ have negative outcomes from psychotropic treatment - poorer treatment response, higher rates of treatment resistance, more antipsychotic-induced side effects, or more psychiatric hospitalizations, while the remaining studies did not find significant associations. Although PGx-scores alone accounted for at best 5.6% of the variance in treatment outcomes (in schizophrenia treatment resistance), together with clinical variables they explained up to 13.7% (in bipolar lithium response), suggesting that clinical translation might be achieved by including PGx-scores in multivariable models. In conclusion, our literature review found that there are still very few studies developing PGx-scores using pharmacogenomic variants. Research with larger and diverse populations is required to develop clinically relevant PGx-scores, using biology-informed and multi-phenotypic polygenic scoring approaches, as well as by integrating clinical variables with these scores to facilitate their translation to psychiatric practice.
Collapse
Affiliation(s)
- Nigussie T Sharew
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Mental Health, Northern Adelaide Local Health Network, SA Health, Adelaide, Australia
- Headspace Adelaide Early Psychosis - Sonder, Adelaide, SA, Australia
| | - Azmeraw T Amare
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Singh S, Stocco G, Theken KN, Dickson A, Feng Q, Karnes JH, Mosley JD, El Rouby N. Pharmacogenomics polygenic risk score: Ready or not for prime time? Clin Transl Sci 2024; 17:e13893. [PMID: 39078255 PMCID: PMC11287822 DOI: 10.1111/cts.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Pharmacogenomic Polygenic Risk Scores (PRS) have emerged as a tool to address the polygenic nature of pharmacogenetic phenotypes, increasing the potential to predict drug response. Most pharmacogenomic PRS have been extrapolated from disease-associated variants identified by genome wide association studies (GWAS), although some have begun to utilize genetic variants from pharmacogenomic GWAS. As pharmacogenomic PRS hold the promise of enabling precision medicine, including stratified treatment approaches, it is important to assess the opportunities and challenges presented by the current data. This assessment will help determine how pharmacogenomic PRS can be advanced and transitioned into clinical use. In this review, we present a summary of recent evidence, evaluate the current status, and identify several challenges that have impeded the progress of pharmacogenomic PRS. These challenges include the reliance on extrapolations from disease genetics and limitations inherent to pharmacogenomics research such as low sample sizes, phenotyping inconsistencies, among others. We finally propose recommendations to overcome the challenges and facilitate the clinical implementation. These recommendations include standardizing methodologies for phenotyping, enhancing collaborative efforts, developing new statistical methods to capitalize on drug-specific genetic associations for PRS construction. Additional recommendations include enhancing the infrastructure that can integrate genomic data with clinical predictors, along with implementing user-friendly clinical decision tools, and patient education. Ethical and regulatory considerations should address issues related to patient privacy, informed consent and safe use of PRS. Despite these challenges, ongoing research and large-scale collaboration is likely to advance the field and realize the potential of pharmacogenomic PRS.
Collapse
Affiliation(s)
- Sonal Singh
- Merck & Co., IncSouth San FranciscoCaliforniaUSA
| | - Gabriele Stocco
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
- Institute for Maternal and Child Health IRCCS Burlo GarofoloTriesteItaly
| | - Katherine N. Theken
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alyson Dickson
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - QiPing Feng
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, R. Ken Coit College of PharmacyUniversity of ArizonaTucsonArizonaUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jonathan D. Mosley
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nihal El Rouby
- Division of Pharmacy Practice and Adminstrative Sciences, James L Winkle College of PharmacyUniversity of CincinnatiCincinnatiOhioUSA
- St. Elizabeth HealthcareEdgewoodKentuckyUSA
| |
Collapse
|
4
|
Crouse JJ, Park SH, Byrne EM, Mitchell BL, Chan K, Scott J, Medland SE, Martin NG, Wray NR, Hickie IB. Evening Chronotypes With Depression Report Poorer Outcomes of Selective Serotonin Reuptake Inhibitors: A Survey-Based Study of Self-Ratings. Biol Psychiatry 2024; 96:4-14. [PMID: 38185236 DOI: 10.1016/j.biopsych.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Preliminary evidence suggests that evening chronotype is related to poorer efficacy of selective serotonin reuptake inhibitors. It is unknown whether this is specific to particular medications, self-rated chronotype, or efficacy. METHODS In the Australian Genetics of Depression Study (n = 15,108; 75% women; 18-90 years; 68% with ≥1 other lifetime diagnosis), a survey recorded experiences with 10 antidepressants, and the reduced Morningness-Eveningness Questionnaire was used to estimate chronotype. A chronotype polygenic score was calculated. Age- and sex-adjusted regression models (Bonferroni-corrected) estimated associations among antidepressant variables (how well the antidepressant worked [efficacy], duration of symptom improvement, side effects, discontinuation due to side effects) and self-rated and genetic chronotypes. RESULTS The chronotype polygenic score explained 4% of the variance in self-rated chronotype (r = 0.21). Higher self-rated eveningness was associated with poorer efficacy of escitalopram (odds ratio [OR] = 1.04; 95% CI, 1.02 to 1.06; p = .000035), citalopram (OR = 1.03; 95% CI, 1.01 to 1.05; p = .004), fluoxetine (OR = 1.03; 95% CI, 1.01 to 1.05; p = .001), sertraline (OR = 1.02; 95% CI, 1.01 to 1.04; p = .0008), and desvenlafaxine (OR = 1.03; 95% CI, 1.01 to 1.05; p = .004), and a profile of increased side effects (80% of those recorded; ORs = 0.93-0.98), with difficulty getting to sleep the most common. Self-rated chronotype was unrelated to duration of improvement or discontinuation. The chronotype polygenic score was only associated with suicidal thoughts and attempted suicide (self-reported). While our measures are imperfect, and not of circadian phase under controlled conditions, the model coefficients suggest that dysregulation of the phenotypic chronotype relative to its genetic proxy drove relationships with antidepressant outcomes. CONCLUSIONS The idea that variation in circadian factors influences response to antidepressants was supported and encourages exploration of circadian mechanisms of depressive disorders and antidepressant treatments.
Collapse
Affiliation(s)
- Jacob J Crouse
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia.
| | - Shin Ho Park
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Enda M Byrne
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Child Health Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brittany L Mitchell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karina Chan
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Jan Scott
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah E Medland
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Queensland, Australia; Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Yu K, Song Z, Zhang B, Pan Q, Gan S, Yang S, Yang Q, Zuo X, Yin Y. Effect of postoperative application of esketamine on postoperative depression and postoperative analgesia in patients undergoing pancreatoduodenectomy: a randomized controlled trial protocol. Trials 2023; 24:546. [PMID: 37598200 PMCID: PMC10440027 DOI: 10.1186/s13063-023-07575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Pancreatoduodenectomy (PD) is traumatic, difficult to perform, and has a high incidence of postoperative complications and perioperative mortality. Postoperative complications and pain occur frequently and seriously affect the psychological status of patients. Esketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has analgesic and antidepressant effects. In this study, we aim to investigate the effect of esketamine on postoperative depression and pain in patients undergoing PD. METHODS/DESIGN This prospective, single-center, randomized control trial will include 80 patients who will undergo elective PD. The patients will be randomly assigned to two groups: the experimental group that will receive esketamine (n = 40) and the control group (n = 40). In the esketamine group, the analgesic pump will be connected immediately after surgery. A solution of esketamine 1.5 mg/kg + sufentanil 2 µg/kg, diluted to 150 mL, will be administered continuously for 72 h at the background infusion and impact doses of 1 mL/h and 2 mL/time, respectively; the locking time will be 10 min. The control group will receive sufentanil 2 µg/kg that will be administered as per the esketamine group. The primary outcome will be the Hamilton Depression Scale (HAMD-17) score on the third day post-surgery (POD3). Secondary study indicators will include (1) visual analog scale (VAS) score and HAMD-17 score prior to surgery, immediately after entering the postanesthesia care unit (PACU) and 1, 2, 3, 4, and 5 days after surgery; (2) Richmond Agitation-Sedation Scale (RASS) score at 1, 2, 3, 4, and 5 days after surgery; (3) consumed doses of sufentanil and esketamine after surgery; (4) postoperative analgesia pump effective press times, rescue analgesia times, and rescue drug dosage, recording the number of rescue analgesia and rescue drug dosage at 6, 24, 48, and 72 h after the patient enters the PACU; (5) postoperative complications and adverse events; (6) postoperative hospital stay; (7) concentrations of brain-derived neurotrophic factor (BDNP), 5-hydroxytryptamine (5-HT), tumor necrosis factor (TNF-α) and interleukin-6, at 1, 3, and, 5 days post-surgery; and (8) the patient survival rate at 6 and 12 months post-surgery. DISCUSSION The study hypothesis is that the postoperative HAMD-17 and VAS scores, incidence of postoperative adverse reactions, and concentration of serum markers BDNP, 5-HT, TNF-α, and IL-6 in the experimental group will be lower than those in the control group. TRIAL REGISTRATION ClinicalTrials.gov ChiCTR2200066303. Registered on November 30, 2022. PROTOCOL VERSION 1.0.
Collapse
Affiliation(s)
- Kaili Yu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhenguo Song
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bowen Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qian Pan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shan Gan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shaoyong Yang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Quanyong Yang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xinhua Zuo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|