1
|
Functional mechanisms of TRPS1 in disease progression and its potential role in personalized medicine. Pathol Res Pract 2022; 237:154022. [PMID: 35863130 DOI: 10.1016/j.prp.2022.154022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
The gene of transcriptional repressor GATA binding 1 (TRPS1), as an atypical GATA transcription factor, has received considerable attention in a plethora of physiological and pathological processes, and may become a promising biomarker for targeted therapies in diseases and tumors. However, there still lacks a comprehensive exploration of its functions and promising clinical applications. Herein, relevant researches published in English from 2000 to 2022 were retrieved from PubMed, Google Scholar and MEDLINE, concerning the roles of TRPS1 in organ differentiation and tumorigenesis. This systematic review predominantly focused on summarizing the structural characteristics and biological mechanisms of TRPS1, its involvement in tricho-rhino-phalangeal syndrome (TRPS), its participation in the development of multiple tissues, the recent advances of its vital features in metabolic disorders as well as malignant tumors, in order to prospect its potential applications in disease detection and cancer targeted therapy. From the clinical perspective, the deeply and thoroughly understanding of the complicated context-dependent and cell-lineage-specific mechanisms of TRPS1 would not only gain novel insights into the complex etiology of diseases, but also provide the fundamental basis for the development of therapeutic drugs targeting both TRPS1 and its critical cofactors, which would facilitate individualized treatment.
Collapse
|
2
|
Socorro M, Hoskere P, Roberts C, Lukashova L, Verdelis K, Beniash E, Napierala D. Deficiency of Mineralization-Regulating Transcription Factor Trps1 Compromises Quality of Dental Tissues and Increases Susceptibility to Dental Caries. FRONTIERS IN DENTAL MEDICINE 2022; 3. [PMID: 35573139 PMCID: PMC9106314 DOI: 10.3389/fdmed.2022.875987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dental caries is the most common chronic disease in children and adults worldwide. The complex etiology of dental caries includes environmental factors as well as host genetics, which together contribute to inter-individual variation in susceptibility. The goal of this study was to provide insights into the molecular pathology underlying increased predisposition to dental caries in trichorhinophalangeal syndrome (TRPS). This rare inherited skeletal dysplasia is caused by mutations in the TRPS1 gene coding for the TRPS1 transcription factor. Considering Trps1 expression in odontoblasts, where Trps1 supports expression of multiple mineralization-related genes, we focused on determining the consequences of odontoblast-specific Trps1 deficiency on the quality of dental tissues. We generated a conditional Trps1Col1a1 knockout mouse, in which Trps1 is deleted in differentiated odontoblasts using 2.3kbCol1a1-CreERT2 driver. Mandibular first molars of 4wk old male and female mice were analyzed by micro-computed tomography (μCT) and histology. Mechanical properties of dentin and enamel were analyzed by Vickers microhardness test. The susceptibility to acid demineralization was compared between WT and Trps1Col1a1cKO molars using an ex vivo artificial caries procedure. μCT analyses demonstrated that odontoblast-specific deletion of Trps1 results in decreased dentin volume in male and female mice, while no significant differences were detected in dentin mineral density. However, histology revealed a wider predentin layer and the presence of globular dentin, which are indicative of disturbed mineralization. The secondary effect on enamel was also detected, with both dentin and enamel of Trps1Col1a1cKO mice being more susceptible to demineralization than WT tissues. The quality of dental tissues was particularly impaired in molar pits, which are sites highly susceptible to dental caries in human teeth. Interestingly, Trps1Col1a1cKO males demonstrated a stronger phenotype than females, which calls for attention to genetically-driven sex differences in predisposition to dental caries. In conclusion, the analyses of Trps1Col1a1cKO mice suggest that compromised quality of dental tissues contributes to the high prevalence of dental caries in TRPS patients. Furthermore, our results suggest that TRPS patients will benefit particularly from improved dental caries prevention strategies tailored for individuals genetically predisposed due to developmental defects in tooth mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Priyanka Hoskere
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Catherine Roberts
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Department of Restorative Dentistry/Comprehensive Care, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
- Department of Endodontics and Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, PA, United States
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Correspondence: Dobrawa Napierala,
| |
Collapse
|
3
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
4
|
Socorro M, Shinde A, Yamazaki H, Khalid S, Monier D, Beniash E, Napierala D. Trps1 transcription factor represses phosphate-induced expression of SerpinB2 in osteogenic cells. Bone 2020; 141:115673. [PMID: 33022456 PMCID: PMC7680451 DOI: 10.1016/j.bone.2020.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Serine protease inhibitor SerpinB2 is one of the most upregulated proteins following cellular stress. This multifunctional serpin has been attributed a number of pleiotropic activities, including roles in cell survival, proliferation, differentiation, immunity and extracellular matrix (ECM) remodeling. Studies of cancer cells demonstrated that expression of SerpinB2 is directly repressed by the Trps1 transcription factor, which is a regulator of skeletal and dental tissues mineralization. In our previous studies, we identified SerpinB2 as one of the novel genes highly upregulated by phosphate (Pi) at the initiation of the mineralization process, however SerpinB2 has never been implicated in formation nor homeostasis of mineralized tissues. The aim of this study was to establish, if SerpinB2 is involved in function of cells producing mineralized ECM and to determine the interplay between Pi signaling and Trps1 in the regulation of SerpinB2 expression specifically in cells producing mineralized ECM. Analyses of the SerpinB2 expression pattern in mouse skeletal and dental tissues detected high SerpinB2 protein levels specifically in cells producing mineralized ECM. qRT-PCR and Western blot analyses demonstrated that SerpinB2 expression is activated by elevated Pi specifically in osteogenic cells. However, the Pi-induced SerpinB2 expression was diminished by overexpression of Trps1. Decreased SerpinB2 levels were also detected in osteoblasts and odontoblasts of 2.3Col1a1-Trps1 transgenic mice. Chromatin immunoprecipitation assay (ChIP) revealed that the occupancy of Trps1 on regulatory elements in the SerpinB2 gene changes in response to Pi. In vitro functional assessment of the consequences of SerpinB2 deficiency in cells producing mineralized ECM detected impaired mineralization in SerpinB2-deficient cells in comparison with controls. In conclusion, high and specific expression of SerpinB2 in cells producing mineralized ECM, the impaired mineralization of SerpinB2-deficient cells and regulation of SerpinB2 expression by two molecules regulating formation of mineralized tissues suggest involvement of SerpinB2 in physiological mineralization.
Collapse
Affiliation(s)
- Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Apurva Shinde
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Hajime Yamazaki
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Sana Khalid
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Daisy Monier
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Elia Beniash
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Bao Q, Zhang J, Wang XX. Effects of Btbd7 knockdown on the proliferation of human dental pulp cells and expression of Dspp. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1460-1465. [PMID: 31938244 PMCID: PMC6958179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/27/2018] [Indexed: 06/10/2023]
Abstract
BTB/POZ domain-containing protein 7 (Btbd7) is recognized as a regulatory gene that promotes epithelial tissue remodeling and branching morphogenesis. In cancer cells, it is involved in epithelial-mesenchymal transition and cell invasion. However, the role of Btbd7 in human dental pulp cells (hDPCs) is not clear. The aim of this study is to explore the function of Btbd7 in hDPCs. Expression of Btbd7 in hDPCs was examined by immunocytochemical staining. Lentiviral vectors expressing small interfering RNA (siRNA)-Btbd7 were used to knockdown expression of Btbd7 in hDPCs. Proliferation of Btbd7 knockdown hDPCs was determined using a cell counting Kit-8 assay, and expression of dentin sialophosphoprotein (Dspp) was assessed using real-time quantitative reverse transcription-PCR and Western blot. Btbd7 was mainly expressed in the cytoplasm and nucleus of hDPCs. Suppression of Btbd7 temporarily promoted hDPC proliferation and significantly inhibited expression of Dspp in hDPCs. Our results show that Btbd7 plays a role in hDPC proliferation, and possibly participates in odontoblast differentiation of hDPCs and dentin formation by regulating the expression of Dspp.
Collapse
Affiliation(s)
- Qi Bao
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong UniversityJinan, Shandong, China
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
- Shanxian Central HospitalShanxian, Shandong, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
- Department of Orthodontics, School of Stomatology, Shandong UniversityJinan, Shandong, China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong UniversityJinan, Shandong, China
- Shandong Provincial Key Laboratory of Oral BiomedicineJinan, Shandong, China
| |
Collapse
|
6
|
Hamilton SL, Ferando B, Eapen AS, Yu JC, Joy AR. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells. J Histochem Cytochem 2016; 65:139-151. [PMID: 27881474 DOI: 10.1369/0022155416676064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
Collapse
Affiliation(s)
- Samantha Lynn Hamilton
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Blake Ferando
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Asha Sarah Eapen
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Jennifer Chian Yu
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Anita Rose Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| |
Collapse
|
7
|
Kunotai W, Ananpornruedee P, Lubinsky M, Pruksametanan A, Kantaputra PN. Making extra teeth: Lessons from a TRPS1 mutation. Am J Med Genet A 2016; 173:99-107. [PMID: 27706911 DOI: 10.1002/ajmg.a.37967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/21/2016] [Indexed: 01/16/2023]
Abstract
A Thai mother and her two daughters were affected with tricho-rhino-phalangeal syndrome type I. The daughters had 15 and 18 supernumerary teeth, respectively. The mother had normal dentition. Mutation analysis of TRPS1 showed a novel heterozygous c.3809_3811delACTinsCATGTTGTG mutation in all. This mutation is predicted to cause amino acid changes in the Ikaros-like zinc finger domain near the C-terminal end of TRPS1, which is important for repressive protein function. The results of our study and the comprehensive review of the literature show that pathways of forming supernumerary teeth appear to involve APC and RUNX2, the genes responsible for familial adenomatous polyposis syndrome and cleidocranial dysplasia, respectively. The final pathway resulting in supernumerary teeth seems to involve Wnt, a morphogen active during many stages of development. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Worawan Kunotai
- Department of Oral and Maxillofacial Surgery, Chonburi Hospital, Chonburi, Thailand
| | | | | | - Apitchaya Pruksametanan
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Dentistry, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Piranit Nik Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand.,Faculty of Dentistry, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Dentaland Clinic, Chiang Mai, Thailand
| |
Collapse
|