1
|
Gerardi D, Bernardi S, Bruni A, Falisi G, Botticelli G. Characterization and morphological methods for oral biofilm visualization: where are we nowadays? AIMS Microbiol 2024; 10:391-414. [PMID: 38919718 PMCID: PMC11194622 DOI: 10.3934/microbiol.2024020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.
Collapse
Affiliation(s)
- Davide Gerardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Bruni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca Botticelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Brochado Martins JF, Jautze A, Georgiou AC, Tulp BMT, Crielaard W, van der Waal SV. Well-being, postoperative pain and outcome after clinical application of a novel root canal irrigation fluid-RISA-in teeth with apical periodontitis: A first-in-human study. Int Endod J 2023; 56:1488-1498. [PMID: 37771316 DOI: 10.1111/iej.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
AIM The aim of the study was to assess the tolerance to the new root canal irrigation fluid RISA after root canal treatment (RCT) by evaluating the subject's postoperative well-being, postoperative pain (PP) and treatment outcome. METHODOLOGY A single-arm prospective study with 16 subjects (17 teeth) diagnosed with asymptomatic apical periodontitis. Endodontic treatment in one session performed using RISA for root canal irrigation. Well-being was assessed on the same day and after 24 h by telephone. For pain intensity, a visual analogue scale was used at 0-5 days. Clinical and radiographic evaluations were performed at ≥12 months. Well-being, occurrence of PP and outcome were qualitatively reported. Friedman test for paired samples and Spearman correlation coefficient were used. Significance was set at p < .05. RESULTS At the same day and after 24 h, 14/16 subjects felt 'good'. 9/16 presented intra- or extra-oral swelling. The frequency of PP ≥36 (weak) was 82.4%. On the same day, 1 and 2 days postoperatively, there was more pain compared with preoperative pain p < .05. At Day 3, PP equalled preoperative pain (p > .05). 62.5% of subjects needed analgesics Day 0-2. The recall rate was 94.1%, and resolution of apical periodontitis was observed in 87.5%. CONCLUSIONS The well-being of subjects was good, and the overall PP intensity was low. However, postoperative intra- and extra-oral swelling occurred often. At the recall visit, the effectiveness of the RCT with RISA appeared high (87.5%). The encouraging outcome results plus the fact that RISA has a broader action range than NaOCl in vitro, justify further work on the RISA solution. To reduce postoperative swelling, it is advised to further investigate the optimal way of application of RISA in the laboratory before clinical application is recommended.
Collapse
Affiliation(s)
- João Filipe Brochado Martins
- Department of Endodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Anthony Jautze
- Department of Endodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Athina Christina Georgiou
- Department of Endodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Birgitte Maria Theresia Tulp
- Department of Endodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Suzette Veronica van der Waal
- Department of Endodontics, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Takenaka S, Sotozono M, Ohkura N, Noiri Y. Evidence on the Use of Mouthwash for the Control of Supragingival Biofilm and Its Potential Adverse Effects. Antibiotics (Basel) 2022; 11:727. [PMID: 35740134 PMCID: PMC9219991 DOI: 10.3390/antibiotics11060727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial mouthwash improves supragingival biofilm control when used in conjunction with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has been no significant change in the strength of the evidence over the last decade. A strategy for biofilm control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following retarded penetration, and ecological changes to the microbiota. These concerns require further elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to preserve the benefits of the normal resident oral microflora.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (M.S.); (N.O.); (Y.N.)
| | | | | | | |
Collapse
|
4
|
Wan H, Ma C, Vinke J, Vissink A, Herrmann A, Sharma PK. Next Generation Salivary Lubrication Enhancer Derived from Recombinant Supercharged Polypeptides for Xerostomia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34524-34535. [PMID: 32463670 PMCID: PMC8192052 DOI: 10.1021/acsami.0c06159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Insufficient retention of water in adsorbed salivary conditioning films (SCFs) because of altered saliva secretion can lead to oral dryness (xerostomia). Patients with xerostomia sometimes are given artificial saliva, which often lacks efficacy because of the presence of exogenous molecules with limited lubrication properties. Recombinant supercharged polypeptides (SUPs) improve salivary lubrication by enhancing the functionality of endogenously available salivary proteins, which is in stark contrast to administration of exogenous lubrication enhancers. This novel approach is based on establishing a layered architecture enabled by electrostatic bond formation to stabilize and produce robust SCFs in vitro. Here, we first determined the optimal molecular weight of SUPs to achieve the best lubrication performance employing biophysical and in vitro friction measurements. Next, in an ex vivo tongue-enamel friction system, stimulated whole saliva from patients with Sjögren syndrome was tested to transfer this strategy to a preclinical situation. Out of a library of genetically engineered cationic polypeptides, the variant SUP K108cys that contains 108 positive charges and two cysteine residues at each terminus was identified as the best SUP to restore oral lubrication. Employing this SUP, the duration of lubrication (Relief Period) for SCFs from healthy and patient saliva was significantly extended. For patient saliva, the lubrication duration was increased from 3.8 to 21 min with SUP K108cys treatment. Investigation of the tribochemical mechanism revealed that lubrication enhancement is because of the electrostatic stabilization of SCFs and mucin recruitment, which is accompanied by strong water fixation and reduced water evaporation.
Collapse
Affiliation(s)
- Hongping Wan
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Ma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jeroen Vinke
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Arjan Vissink
- University
Medical Center Groningen, Department of Oral and Maxillofacial Surgery, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- DWI Leibniz Institute
for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Prashant K. Sharma
- University Medical
Center Groningen, Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Abstract
Oral lubrication mediated by mucin and protein containing salivary conditioning films (SCFs) with strong water retainability can get impaired due to disease such as xerostomia, that is, a subjective dry mouth feel associated with the changed salivary composition and low salivary flow rate. Aberrant SCFs in xerostomia patient cause difficulties in speech, mastication, and dental erosion while the prescribed artificial saliva is inadequate to solve the complications on a lasting basis. With the growing aging population, it is urgently needed to propose a new strategy to restore oral lubrication. Existing saliva substitutes often overwhelm the aberrant SCFs, generating inadequate relief. Here we demonstrated that the function of aberrant SCFs in a patient with Sjögren syndrome can be boosted through mucin recruitment by a simple mucoadhesive, chitosan-catechol (Chi-C). Chi-C with different conjugation degrees (Chi-C7.6%, Chi-C14.5%, Chi-C22.4%) was obtained by carbodiimide chemistry, which induced a layered structure composed of a rigid bottom and a soft secondary SCF (S-SCF) after reflow of saliva. The higher conjugation degree of Chi-C generates a higher glycosylated S-SCF by mucin recruitment and a lower friction in vitro. The layered S-SCF extends the "relief period" for Sjögren patient saliva over 7-fold, measured on an ex vivo tongue-enamel friction system. Besides lubrication, Chi-C-treated S-SCF reduces dental erosion depths from 125 to 70 μm. Chi-C shows antimicrobial activity against Streptococcus mutans. This research provides a new key insight in restoring the functionality of conditioning film at articulating tissues in living systems.
Collapse
Affiliation(s)
- H. Wan
- Department of Biomedical
Engineering, University of Groningen and University Medical Center
Groningen, Groningen, the Netherlands
| | - A. Vissink
- Department of Oral Maxillofacial
Surgery, University of Groningen and University Medical Center Groningen,
Groningen, the Netherlands
| | - P.K. Sharma
- Department of Biomedical
Engineering, University of Groningen and University Medical Center
Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, Ohshima H, Terao Y, Noiri Y. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health 2020; 20:161. [PMID: 32493283 PMCID: PMC7268619 DOI: 10.1186/s12903-020-01144-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this in vitro study was to examine the possible enhancement of the biofilm peeling effect of a sonic toothbrush following the use of an antimicrobial mouth rinse. METHODS The biofilm at a noncontact site in the interdental area was treated by sound wave convection with the test solution or by immersion in the solution. The biofilm peeling effect was evaluated by determining the bacterial counts and performing morphological observations. A Streptococcus mutans biofilm was allowed to develop on composite resin discs by cultivation with stirring at 50 rpm for 72 h. The specimens were then placed in recesses located between plastic teeth and divided into an immersion group and a combination group. The immersion group was treated with phosphate buffer, chlorhexidine digluconate Peridex™ (CHX) mouth rinse or Listerine® Fresh Mint (EO) mouth rinse. The combination group was treated with CHX or EO and a sonic toothbrush. RESULTS The biofilm thickness was reduced by approximately one-half compared with the control group. The combination treatment produced a 1 log reduction in the number of bacteria compared to the EO immersion treatment. No significant difference was observed in the biofilm peeling effect of the immersion group compared to the control group. CONCLUSIONS The combined use of a sonic toothbrush and a mouth rinse enhanced the peeling of the biofilm that proliferates in places that are difficult to reach using mechanical stress.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan.
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Yuki Suzuki
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Taisuke Hasegawa
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 5274, Gakkocho-dori 2-Bancho, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
7
|
Marx P, Sang Y, Qin H, Wang Q, Guo R, Pfeifer C, Kreth J, Merritt J. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 2020; 6:17. [PMID: 32221309 PMCID: PMC7101444 DOI: 10.1038/s41522-020-0128-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/12/2020] [Indexed: 01/28/2023] Open
Abstract
Transcription regulators from the LexA-like Protein Superfamily control a highly diverse assortment of genetic pathways in response to environmental stress. All characterized members of this family modulate their functionality and stability via a strict coordination with the coprotease function of RecA. Using the LexA-like protein IrvR from Streptococcus mutans, we demonstrate an exception to the RecA paradigm and illustrate how this evolutionary innovation has been coopted to diversify the stress responsiveness of S. mutans biofilms. Using a combination of genetics and biophysical measurements, we demonstrate how non-SOS stresses and SOS stresses each trigger separate regulatory mechanisms that stimulate production of a surface lectin responsible for remodeling the viscoelastic properties of extant biofilms during episodes of environmental stress. These studies demonstrate how changes in the external environment or even anti-biofilm therapeutic agents can activate biofilm-specific adaptive mechanisms responsible for bolstering the integrity of established biofilm communities. Such changes in biofilm community structure are likely to play central roles in the notorious recalcitrance of biofilm infections.
Collapse
Affiliation(s)
- Patrick Marx
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Yu Sang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Hua Qin
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Qingjing Wang
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Rongkai Guo
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Carmem Pfeifer
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA
| | - Jens Kreth
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| | - Justin Merritt
- 0000 0000 9758 5690grid.5288.7Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR 97239 USA ,0000 0000 9758 5690grid.5288.7Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
8
|
Hu C, Wang L, Lin Y, Liang H, Zhou S, Zheng F, Feng X, Rui Y, Shao L. Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Adv Healthc Mater 2019; 8:e1901301. [PMID: 31763779 DOI: 10.1002/adhm.201901301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Due to their excellent size, designability, and outstanding targeted antibacterial effects, nanoparticles have become a potential option for controlling oral biofilm-related infections. However, the formation of an oral biofilm is a dynamic process, and factors affecting the performance of antibiofilm treatments are complex. As such, when examining the existing literature on the antibiofilm effects of nanoparticles, attention should be paid to the specific mechanisms of action at different stages of oral biofilm formation, as well as relevant influencing factors, in order to achieve an objective and comprehensive evaluation. This review is intended to detail the antibacterial mechanisms of nanoparticles during the four stages of the formation of oral biofilms: 1) acquired film formation; 2) bacterial adhesion; 3) early biofilm development; and 4) biofilm maturation. In addition, factors influencing the antibiofilm properties of nanoparticles are summarized from the aspects of nanoparticles themselves, biofilm models, and host factors. The limitations of current research and possible trends for future research are also discussed. In summary, nanoparticles are a promising antioral biofilm strategy. It is hoped that this review can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.
Collapse
Affiliation(s)
- Chen Hu
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Lin‐Lin Wang
- Department of StomatologyHainan General Hospital Haikou Hainan 570311 China
| | - Yu‐Qing Lin
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Hui‐Min Liang
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Shan‐Yu Zhou
- Department of StomatologyThe People's Hospital of Longhua Shenzhen 518109 China
| | - Fen Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Laboratory MedicineFoshan Women and Children Hospital Foshan Guangdong 528000 China
| | - Xiao‐Li Feng
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Yong‐Yu Rui
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
| | - Long‐Quan Shao
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| |
Collapse
|
9
|
Nilebäck L, Widhe M, Seijsing J, Bysell H, Sharma PK, Hedhammar M. Bioactive Silk Coatings Reduce the Adhesion of Staphylococcus aureus while Supporting Growth of Osteoblast-like Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24999-25007. [PMID: 31241302 DOI: 10.1021/acsami.9b05531] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Orthopedic and dental implants are associated with a substantial risk of failure due to biomaterial-associated infections and poor osseointegration. To prevent such outcomes, a coating can be applied on the implant to ideally both reduce the risk of bacterial adhesion and support establishment of osteoblasts. We present a strategy to construct dual-functional silk coatings with such properties. Silk coatings were made from a recombinant partial spider silk protein either alone (silkwt) or fused with a cell-binding motif derived from fibronectin (FN-silk). The biofilm-dispersal enzyme Dispersin B (DspB) and two peptidoglycan degrading endolysins, PlySs2 and SAL-1, were produced recombinantly. A sortase recognition tag (SrtTag) was included to allow site-specific conjugation of each enzyme onto silkwt and FN-silk coatings using an engineered variant of the transpeptidase Sortase A (SrtA*). To evaluate bacterial adhesion on the samples, Staphylococcus aureus was incubated on the coatings and subsequently subjected to live/dead staining. Fluorescence microscopy revealed a reduced number of bacteria on all silk coatings containing enzymes. Moreover, the bacteria were mobile to a higher degree, indicating a negative influence on the bacterial adhesion. The capability to support mammalian cell interactions was assessed by cultivation of the osteosarcoma cell line U-2 OS on dual-functional surfaces, prepared by conjugating the enzymes onto FN-silk coatings. U-2 OS cells could adhere to silk coatings with enzymes and showed high spreading and viability, demonstrating good cell compatibility.
Collapse
Affiliation(s)
- Linnea Nilebäck
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , AlbaNova University Center, KTH Royal Institute of Technology , SE-106 91 Stockholm , Sweden
| | - Mona Widhe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , AlbaNova University Center, KTH Royal Institute of Technology , SE-106 91 Stockholm , Sweden
| | - Johan Seijsing
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Helena Bysell
- RISE Research Institutes of Sweden , SE-11486 Stockholm , Sweden
| | - Prashant K Sharma
- Department of Biomedical Engineering , University of Groningen and University Medical Center of Groningen , NL-9713AV Groningen , The Netherlands
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , AlbaNova University Center, KTH Royal Institute of Technology , SE-106 91 Stockholm , Sweden
| |
Collapse
|
10
|
Li Y, Pan J, Ye G, Zhang Q, Wang J, Zhang J, Fang J. In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur J Oral Sci 2017; 125:463-470. [PMID: 29024061 DOI: 10.1111/eos.12374] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the antimicrobial effects of non-thermal plasma-activated water (PAW) as a novel mouthwash in vitro. Three representative oral pathogens - Streptococcus mutans, Actinomyces viscosus and Porphyromonas gingivalis - were treated with PAW. The inactivation effect was evaluated using the colony-forming unit (CFU) method, and the morphological and structural changes of a cell were observed by scanning electron microscopy and transmission electron microscopy (TEM). The physicochemical properties of PAW were analysed, and its influence on the leakage of intracellular proteins and DNA was evaluated. The results showed significant reduction of Streptococcus mutans within 60 s, of Actinomyces viscosus within 40 s, and of Porphyromonas gingivalis in less than 40 s. Scanning electron microscopy and TEM images showed that the normal cell morphology changed by varying degrees after treatment with PAW. Intracellular proteins (280 nm) and DNA (260 nm) leaked from all three species of bacteria after treatment with PAW. Reactive oxygen species (ROS), especially atomic oxygen (O), hydroxyl radical (˙OH), and hydrogen peroxide (H2 O2 ), were generated and led to strong oxidative stress and cell damage. These results suggest that PAW has potential use as a novel antimicrobial mouthwash.
Collapse
Affiliation(s)
- Yinglong Li
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jie Pan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guopin Ye
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,School of Stomatology, Lan Zhou University, Gansu, China
| | - Qian Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Wang
- School of Stomatology, Lan Zhou University, Gansu, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,College of Engineering, Peking University, Beijing, China
| |
Collapse
|
11
|
Sjollema J, van der Mei HC, Hall CL, Peterson BW, de Vries J, Song L, Jong EDD, Busscher HJ, Swartjes JJTM. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Sci Rep 2017; 7:4369. [PMID: 28663565 PMCID: PMC5491521 DOI: 10.1038/s41598-017-04703-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to tα with 0 < α ≪ 1, indicative of confined displacement. Analysis of simulated position-maps of adhering particles using a new, in silico model confirmed that adhesion to surfaces is irreversible through detachment and successive re-attachment of reversibly-binding tethers. This makes bacterial adhesion mechanistically comparable with the irreversible adsorption of high-molecular-weight proteins to surfaces, mediated by multiple, reversibly-binding molecular segments.
Collapse
Affiliation(s)
- Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Connie L Hall
- Department of Biomedical Engineering, The College of New Jersey, Armstong Hall, Room 181, P. O. Box 7718, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lei Song
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jan J T M Swartjes
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
12
|
Spengler C, Thewes N, Nolle F, Faidt T, Umanskaya N, Hannig M, Bischoff M, Jacobs K. Enhanced adhesion ofStreptococcus mutansto hydroxyapatite after exposure to saliva. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Nicolas Thewes
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Friederike Nolle
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Natalia Umanskaya
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene; Saarland University; Homburg Saarland Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| |
Collapse
|