1
|
Han L, Ji Y, Yu Y, Ni Y, Zeng H, Zhang X, Liu H, Zhang Y. Trajectory-centric framework TrajAtlas reveals multi-scale differentiation heterogeneity among cells, genes, and gene modules in osteogenesis. PLoS Genet 2024; 20:e1011319. [PMID: 39436962 PMCID: PMC11530032 DOI: 10.1371/journal.pgen.1011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoblasts, the key cells responsible for bone formation and the maintenance of skeletal integrity, originate from a diverse array of progenitor cells. However, the mechanisms underlying osteoblast differentiation from these multiple osteoprogenitors remain poorly understood. To address this knowledge gap, we developed a comprehensive framework to investigate osteoblast differentiation at multiple scales, encompassing cells, genes, and gene modules. We constructed a reference atlas focused on differentiation, which incorporates various osteoprogenitors and provides a seven-level cellular taxonomy. To reconstruct the differentiation process, we developed a model that identifies the transcription factors and pathways involved in differentiation from different osteoprogenitors. Acknowledging that covariates such as age and tissue type can influence differentiation, we created an algorithm to detect differentially expressed genes throughout the differentiation process. Additionally, we implemented methods to identify conserved pseudotemporal gene modules across multiple samples. Overall, our framework systematically addresses the heterogeneity observed during osteoblast differentiation from diverse sources, offering novel insights into the complexities of bone formation and serving as a valuable resource for understanding osteogenesis.
Collapse
Affiliation(s)
- Litian Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yiqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res 2021; 36:1432-1447. [PMID: 34213032 PMCID: PMC8338797 DOI: 10.1002/jbmr.4410] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Osteoblasts are the only cells that can give rise to bones in vertebrates. Thus, one of the most important functions of these metabolically active cells is mineralized matrix production. Because osteoblasts have a limited lifespan, they must be constantly replenished by preosteoblasts, their immediate precursors. Because disruption of the regulation of bone-forming osteoblasts results in a variety of bone diseases, a better understanding of the origin of these cells by defining the mechanisms of bone development, remodeling, and regeneration is central to the development of novel therapeutic approaches. In recent years, substantial new insights into the origin of osteoblasts-largely owing to rapid technological advances in murine lineage-tracing approaches and other single-cell technologies-have been obtained. Collectively, these findings indicate that osteoblasts involved in bone formation under various physiological, pathological, and therapeutic conditions can be obtained from numerous sources. The origins of osteoblasts include, but are not limited to, chondrocytes in the growth plate, stromal cells in the bone marrow, quiescent bone-lining cells on the bone surface, and specialized fibroblasts in the craniofacial structures, such as sutures and periodontal ligaments. Because osteoblasts can be generated from local cellular sources, bones can flexibly respond to regenerative and anabolic cues. However, whether osteoblasts derived from different cellular sources have distinct functions remains to be investigated. Currently, we are at the initial stage to aptly unravel the incredible diversity of the origins of bone-forming osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
3
|
Chen G, Xu H, Yao Y, Xu T, Yuan M, Zhang X, Lv Z, Wu M. BMP Signaling in the Development and Regeneration of Cranium Bones and Maintenance of Calvarial Stem Cells. Front Cell Dev Biol 2020; 8:135. [PMID: 32211409 PMCID: PMC7075941 DOI: 10.3389/fcell.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is highly conserved across many species, and its importance for the patterning of the skeletal system has been demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects. Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling pathway have been demonstrated to be significant in determining calvarial osteogenic potentials and ossification in vitro and in vivo. More importantly, the BMP signaling pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells, indicating a potential clinic significance in calvarial bone and in expediting regeneration. Following the inherent evidence of BMP signaling in craniofacial biology, we summarize recent discoveries relating to BMP signaling in the development of calvarial structures, functions of the suture stem cells and their niche and regeneration. This review will not only provide a better understanding of BMP signaling in cranial biology, but also exhibit the molecular targets of BMP signaling that possess clinical potential for tissue regeneration.
Collapse
Affiliation(s)
- Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haodong Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifeng Yao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengting Yuan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengrui Wu
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Nagata M, Ono N, Ono W. Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. J Dent Res 2019; 99:133-142. [PMID: 31623502 DOI: 10.1177/0022034519882692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tooth eruption is a unique biological process by which highly mineralized tissues emerge into the outer world, and it occurs concomitantly with tooth root formation. These 2 processes have been considered independent phenomena; however, recent studies support the theory that they are indeed intertwined. Dental mesenchymal progenitor cells in the dental follicle lie at the heart of the coupling of these 2 processes, providing a source for diverse mesenchymal cells that support formation of the highly functional tooth root and the periodontal attachment apparatus, while facilitating formation of osteoclasts. These cells are regulated by autocrine signaling by parathyroid hormone-related protein (PTHrP) and its parathyroid hormone/PTHrP receptor PPR. This PTHrP-PPR signaling appears to crosstalk with other signaling pathways and regulates proper cell fates of mesenchymal progenitor cell populations. Disruption of this autocrine PTHrP-PPR signaling in these cells leads to defective formation of the periodontal attachment apparatus, tooth root malformation, and failure of tooth eruption in molars, which essentially recapitulate primary failure of eruption in humans, a rare genetic disorder exclusively affecting tooth eruption. Diversity and distinct functionality of these mesenchymal progenitor cell populations that regulate tooth eruption and tooth root formation are beginning to be unraveled.
Collapse
Affiliation(s)
- M Nagata
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|