1
|
Frosio T, Thomas S, Endres J, Eberhardt H, Louis B, Cabianca T, Brown I, Foster M, Menaa N, Bertreix P. Transfer functions for QA/ QBinternational regulatory limits for the safe transport of radioactive materials. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:031504. [PMID: 39019049 DOI: 10.1088/1361-6498/ad6453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
This paper presents a proposed revision of the International Atomic Energy Agency transport regulations, related to theA1andA2limit values used to determine the radioactive transport classification. Based on the 'Qsystem', a novel methodology was introduced to deriveQAandQBvalues related to scenarios involving external exposure from a distant source. These values are key parameters that respectively represent the total effective dose and total equivalent dose to the skin, from all primary and secondary particles contributing to radiation exposure. The International Working Group (WGA1/A2) is established and associated with the TRANSSC Technical Expert Group on Radiation Protection. A review of theA1andA2values is performed in response to identified limitations within the existingQsystem. The followed approach is based on Monte Carlo simulations that enabled the development of transfer functions aimed at reducing computational time and increasing the flexibility of dose evaluations for any radionuclide with known particle emission spectra. This method allows updating theQAandQBvalues to account for future data evolutions (decay data, fluence-to-dose conversion coefficients) and standardizing the calculation of regulation limits across all referenced radionuclides and scenarios related to external exposure. The transfer functions are established using three Monte Carlo simulation codes-FLUKA, Geant4, and MCNP-and address the previous limitations of the 'Qsystem', reflecting the latest International Commission for Radiation Protection recommendations and improvements in calculation techniques. The results of the WG show consistent agreement across the codes, with minor discrepancies observed at low primary energies due to statistical uncertainties and different handling of stopping power for electrons/positrons in the codes. This revised approach aligns with current standards and recommendations, ensuring that the radiological consequences of transport accidents are acceptable for the newA1andA2limits from a radiological protection perspective.
Collapse
Affiliation(s)
- Thomas Frosio
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025-7015, United States of America
| | - Samuel Thomas
- Institut de Radioprotection et de Sûreté Nucléaire, 92260 Fontenay-aux-Roses, France
| | - Janis Endres
- Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH, 50667 Cologne, Germany
| | - Holger Eberhardt
- Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH, 50667 Cologne, Germany
| | - Baptiste Louis
- Institut de Radioprotection et de Sûreté Nucléaire, 92260 Fontenay-aux-Roses, France
| | - Tiberio Cabianca
- UK Health Security Agency, Chilton Didcot, Oxfordshire, United Kingdom
| | - Iain Brown
- UK Health Security Agency, Chilton Didcot, Oxfordshire, United Kingdom
| | - Matthew Foster
- UK Health Security Agency, Chilton Didcot, Oxfordshire, United Kingdom
| | - Nabil Menaa
- Radiation Protection Group, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| | - Philippe Bertreix
- Radiation Protection Group, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland
| |
Collapse
|
2
|
Gervot H, Letessier W, Loess J, Bayle-Escurat C, Métivier D, Saurat D, Jamet-Anselme E. Occupational internal monitoring in nuclear medicine service of Sainte-Anne military hospital: previous considerations and results. RADIATION PROTECTION DOSIMETRY 2024; 200:294-304. [PMID: 38145953 DOI: 10.1093/rpd/ncad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
The Nuclear Medicine Department of Sainte-Anne military hospital in Toulon uses 99mTc, 123I and 18F unsealed sources to provide therapeutic and diagnostic care. For a few years, only ambient air and surface monitoring were performed to check the absence of internal contamination risk for workers. To verify this risk assessment hypothesis, confirmatory monitoring programme including in vivo and in vitro measurements was performed by the French defence radiation protection service (SPRA, Clamart). Here, due to the short half-life of targeted radionuclides, the analytical sensitivity was determined with estimations of minimal detectable activities and derived recording levels. It was shown that sensitivity was sufficient to detect an internal contamination leading to an effective dose of 0.1 mSv for few days post intake. At the same time, around 20 whole-body countings were performed. Results were below minimal detectable activity and were confirmed by 24-hours urine analysis. So, actual working conditions do not lead to measurable internal contamination for nuclear medicine staff.
Collapse
Affiliation(s)
- Héloïse Gervot
- Laboratoire d'analyses de surveillance et d'expertise de la Marine, BCRM Toulon - LASEM BP61, 83800 Toulon Cedex 9, France
| | - Wilfried Letessier
- Institut de recherches biomédicales des armées, Place Général Valérie André, 91220 Brétigny-sur-Orge, France
| | - Jérôme Loess
- Service de Protection Radiologique des Armées, 1bis rue du Lieutenant Raoul Batany CS, 557 92141 Clamart Cedex, France
| | | | - Denis Métivier
- Hôpital d'instruction des armées Sainte-Anne, BCRM Toulon, BP600 Toulon Cedex 9, France
| | - Dominique Saurat
- Service de Protection Radiologique des Armées, 1bis rue du Lieutenant Raoul Batany CS, 557 92141 Clamart Cedex, France
| | - Emilie Jamet-Anselme
- Service de Protection Radiologique des Armées, 1bis rue du Lieutenant Raoul Batany CS, 557 92141 Clamart Cedex, France
| |
Collapse
|
3
|
Avtandilashvili M, Tolmachev SY. Forty-eight-year follow-up of a female worker exposed to highly enriched uranium via chronic and acute inhalation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:81-95. [PMID: 38217567 DOI: 10.1007/s00411-023-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
The United States Transuranium and Uranium Registries (USTUR) is a unique resource of data and materials for studying biokinetics of uranium in the human body. In this study, bioassay data and post-mortem organ activities from a female whole-body USTUR donor who was exposed to highly enriched uranium were analyzed using the IMBA Professional Plus® software to derive the best estimate of the total intake. The resulting radiation doses delivered to this individual's whole body and major target organs were calculated from estimated intake based on case-specific dose coefficients derived using the AIDE® software. Both intake and dose calculations were carried out using the biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP) in its Occupational Intakes of Radionuclides publication series. Different exposure scenarios including chronic and acute inhalation intakes were tested. A combination of a chronic inhalation intake and two acute inhalation intakes appears to best describe the bioassay data. To fit this female individual's autopsy data, the transfer rate from the liver to the blood was increased by a factor of 8 and the transfer rate from the kidneys to the blood was decreased by a factor of 2.2. This resulted in the best fit to all data (p = 0.519). The total intake was estimated to be 44.1 kBq, and the committed effective dose was 211 mSv with 96.8% contributed by 234U. 96.6% of the committed effective dose was contributed by the lungs. The remaining 3.4% of the committed effective dose was contributed by all systemic tissues and organs with the highest contribution (0.40%) from the red bone marrow. It is concluded that the current ICRP models, with the adjustment for smoking status, adequately describe uranium biokinetics for this individual except retention in the liver and kidneys. However, this study was based on a single case and may not be sufficient to identify any apparent sex-specific differences in uranium biokinetics.
Collapse
Affiliation(s)
- Maia Avtandilashvili
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 1845 Terminal Drive, Suite 201, Richland, WA, 99354-4959, USA.
| | - Sergey Y Tolmachev
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 1845 Terminal Drive, Suite 201, Richland, WA, 99354-4959, USA
| |
Collapse
|
4
|
de Souza Pereira W, Kelecom A, Lopes JM, Charles-Pierre M, do Carmo AS, Paiva AK, Pelegrinelli SQ, Filho WSS, Silva LF, da Silva AX. Internal dose rate due to intake of uranium and thorium by fish from a dam reservoir associated with a uranium mine in Brazil. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:97-107. [PMID: 38197922 DOI: 10.1007/s00411-023-01051-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/18/2023] [Indexed: 01/11/2024]
Abstract
Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota and uses, as a biological target, and has harmful effects on populations. In the present study, a flooded impoundment created following dam construction in a uranium mine plant undergoing decommissioning was investigated. Internal dose rates due to activity concentration of natural uranium (Unat) and 232Th in omnivorous, phytophagous, and carnivorous fish species were estimated. Radionuclide activity concentrations were obtained by spectrophotometry with arsenazo III in the visible range. The dose rate contribution of 232Th was lower than that of Unat. There were no differences between the internal dose rates to studied fish species due to 232Th, but there were differences for Unat. A dose rate of 2.30·10-2 µGy∙d-1 was found due to the two studied radionuclides. Although this value falls below the benchmark for harmful effects, it is important to acknowledge that the assessment did not account for other critical radionuclides from uranium mining, which also contribute to the internal dose. Moreover, the study did not assess external doses. As a result, the possibility cannot be excluded that dose rates at the study area overcome the established benchmarks for harmful effects.
Collapse
|
5
|
Mori Y, Isobe T. [3. Basic Knowledge of Radiation]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2024; 80:1352-1356. [PMID: 39710414 DOI: 10.6009/jjrt.2024-2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Affiliation(s)
- Yutaro Mori
- Institute of Medicine, University of Tsukuba
| | | |
Collapse
|
6
|
Chaudhury D, Sen U, Biswas S, Shenoy P S, Bose B. Assessment of Threshold Dose of Thoron Inhalation and Its Biological Effects by Mimicking the Radiation Doses in Monazite Placer Deposits Corresponding to the Normal, Medium and Very High Natural Background Radiation Areas. Biol Trace Elem Res 2023; 201:2927-2941. [PMID: 36048359 DOI: 10.1007/s12011-022-03398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
The dose contributed from thoron (220Rn) and its progeny has been neglected in the dose assessment because of its short half-life (t1/2 = 55.6 s) and generally low concentrations. Recently, concentrations of 220Rn gas and its progeny were found to be pronounced in the traditional residential dwellings in China, on beaches of India and in other countries. Accordingly, we investigated the biological effects of thoron (220Rn) decay products in various mouse organs, succeeding inhalation of thoron gas in BALB/c mouse. We investigated the biological effects upon thoron inhalation on mouse organs with a focus on oxidative stress. These mice were divided into (4 random groups): sham inhalation, thoron inhalation for 1, 4 and 10 days. Various tissues (lung, liver and kidney) were then collected after the time points and subjected to various biochemical analyses. Immediately after inhalation, mouse tissues were excised for gamma spectrometry and 72 h post inhalation for biochemical assays. The gamma spectrometry counts and its subsequent calculation of the equivalent dose showed varied distribution in the lung, liver and kidney. Our results suggest that acute thoron inhalation showed a differential effect on the antioxidant function and exerted pathophysiological alterations via oxidative stress in organs at a higher dose. These findings suggested that thoron inhalation could alter the redox state in organs; however, its characteristics were dependent on the total redox system of the organs as well as the thoron concentration and inhalation time.
Collapse
Affiliation(s)
- Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Siddhartha Biswas
- Department of Onco-Pathology, Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
7
|
Stokke C, Kvassheim M, Blakkisrud J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022; 27:5429. [PMID: 36080198 PMCID: PMC9457625 DOI: 10.3390/molecules27175429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
A search in PubMed revealed that 72 radionuclides have been considered for molecular or functional targeted radionuclide therapy. As radionuclide therapies increase in number and variations, it is important to understand the role of the radionuclide and the various characteristics that can render it either useful or useless. This review focuses on the physical characteristics of radionuclides that are relevant for radionuclide therapy, such as linear energy transfer, relative biological effectiveness, range, half-life, imaging properties, and radiation protection considerations. All these properties vary considerably between radionuclides and can be optimised for specific targets. Properties that are advantageous for some applications can sometimes be drawbacks for others; for instance, radionuclides that enable easy imaging can introduce more radiation protection concerns than others. Similarly, a long radiation range is beneficial in targets with heterogeneous uptake, but it also increases the radiation dose to tissues surrounding the target, and, hence, a shorter range is likely more beneficial with homogeneous uptake. While one cannot select a collection of characteristics as each radionuclide comes with an unchangeable set, all the 72 radionuclides investigated for therapy-and many more that have not yet been investigated-provide numerous sets to choose between.
Collapse
Affiliation(s)
- Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
- Department of Physics, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| | - Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
- Division of Clinical Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| | - Johan Blakkisrud
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.O. Box 4959 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
8
|
Leggett RW, Tolmachev SY, Avtandilashvili M, Eckerman KF, Grogan HA, Sgouros G, Woloschak GE, Samuels C, Boice JD. Methods of improving brain dose estimates for internally deposited radionuclides . JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:033001. [PMID: 35785774 DOI: 10.1088/1361-6498/ac7e02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarises the main findings of SC 6-12 described in the recently published NCRP Commentary No. 31, 'Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides'. The Commentary examines the extent to which dose estimates for the brain could be improved through increased realism in the biokinetic and dosimetric models currently used in radiation protection and epidemiology. A limitation of most of the current element-specific systemic biokinetic models is the absence of brain as an explicitly identified source region with its unique rate(s) of exchange of the element with blood. The brain is usually included in a large source region calledOtherthat contains all tissues not considered major repositories for the element. In effect, all tissues inOtherare assigned a common set of exchange rates with blood. A limitation of current dosimetric models for internal emitters is that activity in the brain is treated as a well-mixed pool, although more sophisticated models allowing consideration of different activity concentrations in different regions of the brain have been proposed. Case studies for 18 internal emitters indicate that brain dose estimates using current dosimetric models may change substantially (by a factor of 5 or more), or may change only modestly, by addition of a sub-model of the brain in the biokinetic model, with transfer rates based on results of published biokinetic studies and autopsy data for the element of interest. As a starting place for improving brain dose estimates, development of biokinetic models with explicit sub-models of the brain (when sufficient biokinetic data are available) is underway for radionuclides frequently encountered in radiation epidemiology. A longer-term goal is development of coordinated biokinetic and dosimetric models that address the distribution of major radioelements among radiosensitive brain tissues.
Collapse
Affiliation(s)
- Richard W Leggett
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6038, United States of America
| | | | | | - Keith F Eckerman
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6038, United States of America
| | | | - George Sgouros
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gayle E Woloschak
- Northwestern University Chicago, Chicago, IL, United States of America
| | - Caleigh Samuels
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6038, United States of America
| | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, United States of America
- Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|