1
|
Vu PT, Strassle Rojas S, Ott CC, Lindsey BD. A 9-Fr Endovascular Therapy Transducer With an Acoustic Metamaterial Lens for Rapid Stroke Thrombectomy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1627-1640. [PMID: 39298303 PMCID: PMC11875980 DOI: 10.1109/tuffc.2024.3464330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Large vessel occlusion (LVO) stroke, in which major cerebral arteries such as the internal carotid and middle cerebral arteries supplying the brain are occluded, is the most debilitating form of acute ischemic stroke (AIS). The current gold standard treatment for LVO stroke is mechanical thrombectomy; however, initial attempts to recanalize these large, proximal arteries supplying the brain fail in up to 75% of cases, leading to repeated passes that decrease the likelihood of success and affect patient outcomes. We report the design, fabrication, and testing of a mm forward-treating ultrasound (US) transducer with an acoustic metamaterial lens to dissolve blood clots recalcitrant to first-pass mechanical thrombectomy in LVO stroke. Due to the lens with microscale features, the device was able to produce a increase in peak negative pressure (PNP) (4.3 versus 1.8 MPa) and increase in blood clot dissolution rate ( versus mg/min) with 90% mass reduction after 30 min of treatment. In this small endovascular form factor, the acoustic metamaterial lens increased the acoustic output from the transducer while minimizing the US energy delivered to the surrounding areas outside of the treatment volume.
Collapse
|
2
|
Tarasek M, Fiveland E, Bhushan C, Ghoshal G, Heffter T, Gandomi K, Carvalho PA, Nycz C, Maiette T, Campwala Z, Jeannotte E, Staudt M, Burdette EC, Fischer G, Pilitsis J, Yeo D. MR imaging Evaluation of an Interstitial Focused Ultrasound Probe used in Robotically Assisted Brain Ablation Procedures. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2020; 2020:4114. [PMID: 33013206 PMCID: PMC7531443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Teresa Maiette
- Neurosurgery, Albany Medical College, Albany, NY, United States
| | | | - Erin Jeannotte
- Neurosurgery, Albany Medical College, Albany, NY, United States
| | - Michael Staudt
- Neurosurgery, Albany Medical College, Albany, NY, United States
| | | | | | - Julie Pilitsis
- Neurosurgery, Albany Medical College, Albany, NY, United States
| | - Desmond Yeo
- GE Global Research, Niskayuna, NY, United States
| |
Collapse
|
3
|
MacDonell J, Patel N, Fischer G, Burdette EC, Qian J, Chumbalkar V, Ghoshal G, Heffter T, Williams E, Gounis M, King R, Thibodeau J, Bogdanov G, Brooks OW, Langan E, Hwang R, Pilitsis JG. Robotic Assisted MRI-Guided Interventional Interstitial MR-Guided Focused Ultrasound Ablation in a Swine Model. Neurosurgery 2019; 84:1138-1148. [PMID: 29905844 PMCID: PMC6500887 DOI: 10.1093/neuros/nyy266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/21/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ablative lesions are current treatments for epilepsy and brain tumors. Interstitial magnetic resonance (MR) guided focused ultrasound (iMRgFUS) may be an alternate ablation technique which limits thermal tissue charring as compared to laser therapy (LITT) and can produce larger ablation patterns nearer the surface than transcranial MR guided focused ultrasound (tcMRgFUS). OBJECTIVE To describe our experience with interstitial focused ultrasound (iFUS) ablations in swine, using MR-guided robotically assisted (MRgRA) delivery. METHODS In an initial 3 animals, we optimized the workflow of the robot in the MR suite and made modifications to the robotic arm to allow range of motion. Then, 6 farm pigs (4 acute, 2 survival) underwent 7 iMRgFUS ablations using MRgRA. We altered dosing to explore differences between thermal dosing in brain as compared to other tissues. Imaging was compared to gross examination. RESULTS Our work culminated in adjustments to the MRgRA, iMRgFUS probes, and dosing, culminating in 2 survival surgeries; swine had ablations with no neurological sequelae at 2 wk postprocedure. Immediately following iMRgFUS therapy, diffusion-weighted imaging, and T1 weighted MR were accurate reflections of the ablation volume. T2 and fluid-attenuated inversion-recovery (FLAIR) images were accurate reflections of ablation volume 1-wk postprocedure. CONCLUSION We successfully performed MRgRA iFUS ablation in swine and found intraoperative and postoperative imaging to correlate with histological examination. These data are useful to validate our system and to guide imaging follow-up for thermal ablation lesions in brain tissue from our therapy, tcMRgFUS, and LITT.
Collapse
Affiliation(s)
| | - Niravkumar Patel
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Gregory Fischer
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | | | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, New York
| | | | | | | | | | - Matthew Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Robert King
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Gene Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Olivia W Brooks
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Erin Langan
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Roy Hwang
- Department of Neurosurgery, Albany Medical College, Albany, New York
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| |
Collapse
|
4
|
Lindsey BD, Kim J, Dayton PA, Jiang X. Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1078-1086. [PMID: 28489536 PMCID: PMC5568756 DOI: 10.1109/tuffc.2017.2702010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cancers of the pancreas have the poorest prognosis among all cancers, as many tumors are not detected until surgery is no longer a viable option. Surgical viability is typically determined via endoscopic ultrasound imaging. However, many patients who may be eligible for resection are not offered surgery due to diagnostic challenges in determining vascular or lymphatic invasion. In this paper, we describe the development of a dual-frequency piezoelectric transducer for rotational endoscopic imaging designed to transmit at 4 MHz and receive at 20 MHz in order to image microbubble-specific superharmonic signals. Imaging performance is assessed in a tissue-mimicking phantom at depths from 1 cm [contrast-to-tissue ratio (CTR) = 21.6 dB] to 2.5 cm (CTR = 11.4 dB), in ex vivo porcine vessels, and in vivo in a rodent. The prototyped 1.1-mm aperture transducer demonstrates contrast-specific imaging of microbubbles in a 200- [Formula: see text]-diameter tube through the wall of a 1-cm-diameter porcine artery, suggesting such a device may enable direct visualization of small vessels from within the lumen of larger vessels such as the portal vein or superior mesenteric vein.
Collapse
|
5
|
Martin KH, Lindsey BD, Ma J, Lee M, Li S, Foster FS, Jiang X, Dayton PA. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging. SENSORS (BASEL, SWITZERLAND) 2014; 14:20825-20842. [PMID: 25375755 PMCID: PMC4279513 DOI: 10.3390/s141120825] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023]
Abstract
For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.
Collapse
Affiliation(s)
- K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| | - Jianguo Ma
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Mike Lee
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Sibo Li
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - F Stuart Foster
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Xiaoning Jiang
- Department of Mechanical & Aero-Space Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University at Raleigh, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Dickinson P. Advances in diagnostic and treatment modalities for intracranial tumors. J Vet Intern Med 2014; 28:1165-85. [PMID: 24814688 PMCID: PMC4857954 DOI: 10.1111/jvim.12370] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and areas of novel treatment currently in development.
Collapse
Affiliation(s)
- P.J. Dickinson
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of California DavisDavisCA
| |
Collapse
|
7
|
Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions. Surg Endosc 2014; 28:1734-41. [DOI: 10.1007/s00464-013-3374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
|
8
|
Casper AJ, Liu D, Ballard JR, Ebbini ES. Real-time implementation of a dual-mode ultrasound array system: in vivo results. IEEE Trans Biomed Eng 2013; 60:2751-9. [PMID: 23708766 PMCID: PMC3779652 DOI: 10.1109/tbme.2013.2264484] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.
Collapse
Affiliation(s)
- Andrew J. Casper
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - John R. Ballard
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emad S. Ebbini
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Canney MS, Chavrier F, Tsysar S, Chapelon JY, Lafon C, Carpentier A. A multi-element interstitial ultrasound applicator for the thermal therapy of brain tumors. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1647-1655. [PMID: 23927205 DOI: 10.1121/1.4812883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interstitial thermal therapy is a minimally invasive treatment modality that has been used clinically for ablating both primary and secondary brain tumors. Here a multi-element interstitial ultrasound applicator is described that allows for increased spatial control during thermal ablation of tumors as compared to existing clinical devices. The device consists of an array of 56 ultrasound elements operating at 6 MHz, oriented on the seven faces of a 3.2 mm flexible catheter. The device was first characterized using the acoustic holography method to examine the functioning of the array. Then experiments were performed to measure heating in tissue-mimicking gel phantoms and ex vivo tissue samples using magnetic resonance imaging-based thermometry. Experimental measurements were compared with results obtained using numerical simulations. Last, simulations were performed to study the feasibility of using the device for thermal ablation in the brain. Experimental results show that the device can be used to induce a temperature rise of greater than 20 °C in ex vivo tissue samples and numerical simulations further demonstrate that tumors with diameters of greater than 30-mm could potentially be treated.
Collapse
Affiliation(s)
- Michael S Canney
- CarThéra, Brain and Spine Institute, Pitié Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Patel V, Light E, Herickhoff C, Grant G, Britz G, Wilson C, Palmeri M, Smith S. Intracranial dual-mode IVUS and hyperthermia using circular arrays: preliminary experiments. ULTRASONIC IMAGING 2013; 35:17-29. [PMID: 23287504 PMCID: PMC3823244 DOI: 10.1177/0161734612469372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, we investigated the feasibility of using 3.5-Fr (3 Fr = 1 mm) circular phased-array intravascular ultrasound (IVUS) catheters for minimally invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated in two ways: (1) by inserting a 3.5-Fr IVUS catheter through skull burr holes, for 20 MHz brain imaging in the pig model, and (2) by testing a modified circular array for therapy potential with 18.5-MHz and 9-MHz continuous wave (CW) excitation. The imaging transducer's performance was superior to our previous 9-MHz mechanical IVUS prototype. The therapy catheter transducer was driven by CW electrical power at 18.5 MHz, achieving temperature changes reaching +8°C at a depth of 2 mm in a human glioblastoma grown on the flank of a mouse with minimal transducer resistive heating of +2°C. Further hyperthermia trials showed that 9-MHz CW excitation produced temperature changes of +4.5°C at a depth of 12 mm-a sufficient temperature rise for our long-term goal of targeted, controlled drug release via thermosensitive liposomes for therapeutic treatment of 1-cm-diameter glioblastomas.
Collapse
|
11
|
Herickhoff CD, Wilson CM, Grant GA, Britz GW, Light ED, Palmeri ML, Wolf PD, Smith SW. Dual-mode IVUS transducer for image-guided brain therapy: preliminary experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1667-76. [PMID: 21856073 PMCID: PMC3177008 DOI: 10.1016/j.ultrasmedbio.2011.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 05/11/2023]
Abstract
In this study, we investigated the feasibility of using 3.5-Fr intravascular ultrasound (IVUS) catheters for minimally-invasive, image-guided hyperthermia treatment of tumors in the brain. Feasibility was demonstrated by: (1) retro-fitting a commercial 3.5-Fr IVUS catheter with a 5 × 0.5 × 0.22 mm PZT-4 transducer for 9-MHz imaging and (2) testing an identical transducer for therapy potential with 3.3-MHz continuous-wave excitation. The imaging transducer was compared with a 9-Fr, 9-MHz ICE catheter when visualizing the post-mortem ovine brain and was also used to attempt vascular access to an in vivo porcine brain. A net average electrical power input of 700 mW was applied to the therapy transducer, producing a temperature rise of +13.5°C at a depth of 1.5 mm in live brain tumor tissue in the mouse model. These results suggest that it may be feasible to combine the imaging and therapeutic capabilities into a single device as a clinically-viable instrument.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University Medical Center, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Herickhoff CD, Grant GA, Britz GW, Smith SW. Dual-mode IVUS catheter for intracranial image-guided hyperthermia: feasibility study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:2572-84. [PMID: 21041144 PMCID: PMC3018697 DOI: 10.1109/tuffc.2010.1723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the feasibility of modifying 3-Fr IVUS catheters in several designs to potentially achieve minimally-invasive, endovascular access for image-guided ultrasound hyperthermia treatment of tumors in the brain. Using a plane wave approximation, target frequencies of 8.7 and 3.5 MHz were considered optimal for heating at depths (tumor sizes) of 1 and 2.5 cm, respectively. First, a 3.5-Fr IVUS catheter with a 0.7-mm diameter transducer (30 MHz nominal frequency) was driven at 8.6 MHz. Second, for a low-frequency design, a 220-μm-thick, 0.35 x 0.35-mm PZT-4 transducer--driven at width-mode resonance of 3.85 MHz--replaced a 40-MHz element in a 3.5-Fr coronary imaging catheter. Third, a 5 x 0.5-mm PZT-4 transducer was evaluated as the largest aperture geometry possible for a flexible 3-Fr IVUS catheter. Beam plots and on-axis heating profiles were simulated for each aperture, and test transducers were fabricated. The electrical impedance, impulse response, frequency response, maximum intensity, and mechanical index were measured to assess performance. For the 5 x 0.5-mm transducer, this testing also included mechanically scanning and reconstructing an image of a 2.5-cm-diameter cyst phantom as a preliminary measure of imaging potential.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | |
Collapse
|