1
|
Luo P, Zheng L, Zou J, Chen T, Zou J, Li W, Chen Q, Qian B. Insights into vitamin A in bladder cancer, lack of attention to gut microbiota? Front Immunol 2023; 14:1252616. [PMID: 37711628 PMCID: PMC10497765 DOI: 10.3389/fimmu.2023.1252616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Vitamin A has long been associated with bladder cancer, and many exogenous vitamin A supplements, vitamin A derivatives, and synthetic drugs have been investigated over the years. However, the effectiveness of these strategies in clinical practice has not met expectations, and they have not been widely adopted. Recent medical research on intestinal flora has revealed that bladder cancer patients exhibit reduced serum vitamin A levels and an imbalance of gut microbiota. In light of the close relationship between gut microbiota and vitamin A, one can speculate that a complex regulatory mechanism exists between the two in the development and occurrence of bladder cancer. As such, further exploration of their interaction in bladder cancer may help guide the use of vitamin A for preventive purposes. During the course of this review, attention is paid to the influence of intestinal microbiota on the vitamin A metabolism and the RA signaling pathway, as well as the mutual promotion relationships between them in the prevention of bladder cancer, In addition, it emphasizes the importance of intestinal microbiota for bladder cancer prevention and treatment.
Collapse
Affiliation(s)
- Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Kuret T, Kreft ME, Romih R, Veranič P. Cannabidiol as a Promising Therapeutic Option in IC/BPS: In Vitro Evaluation of Its Protective Effects against Inflammation and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24055055. [PMID: 36902479 PMCID: PMC10003465 DOI: 10.3390/ijms24055055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Several animal studies have described the potential effect of cannabidiol (CBD) in alleviating the symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the urinary bladder. However, the effects of CBD, its mechanism of action, and modulation of downstream signaling pathways in urothelial cells, the main effector cells in IC/BPS, have not been fully elucidated yet. Here, we investigated the effect of CBD against inflammation and oxidative stress in an in vitro model of IC/BPS comprised of TNFα-stimulated human urothelial cells SV-HUC1. Our results show that CBD treatment of urothelial cells significantly decreased TNFα-upregulated mRNA and protein expression of IL1α, IL8, CXCL1, and CXCL10, as well as attenuated NFκB phosphorylation. In addition, CBD treatment also diminished TNFα-driven cellular reactive oxygen species generation (ROS), by increasing the expression of the redox-sensitive transcription factor Nrf2, the antioxidant enzymes superoxide dismutase 1 and 2, and hem oxygenase 1. CBD-mediated effects in urothelial cells may occur by the activation of the PPARγ receptor since inhibition of PPARγ resulted in significantly diminished anti-inflammatory and antioxidant effects of CBD. Our observations provide new insights into the therapeutic potential of CBD through modulation of PPARγ/Nrf2/NFκB signaling pathways, which could be further exploited in the treatment of IC/BPS.
Collapse
|
3
|
Tratnjek L, Jeruc J, Romih R, Zupančič D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3510. [PMID: 33805295 PMCID: PMC8036787 DOI: 10.3390/ijms22073510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer worldwide with a high recurrence rate, morbidity and mortality. Therefore, chemoprevention and improved treatment of BC are of paramount importance. Epidemiological studies suggest that adequate vitamin A intake may be associated with reduced BC risk. In addition, retinoids, natural and synthetic derivatives of vitamin A, are intensively studied in cancer research due to their antioxidant properties and their ability to regulate cell growth, differentiation, and apoptosis. Findings from in vivo and in vitro models of BC show great potential for the use of retinoids in the chemoprevention and treatment of BC. However, translation to the clinical practice is limited. In this narrative review we discuss: (i) vitamin A and retinoid metabolism and retinoic acid signalling, (ii) the pathobiology of BC and the need for chemoprevention, (iii) the epidemiological evidence for the role of dietary vitamin A in BC, (iv) mechanistic insights obtained from in vivo and in vitro models, (v) clinical trials of retinoids and the limitations of retinoid use, (vi) novel systems of retinoid delivery, and (vii) components of retinoid signalling pathways as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| |
Collapse
|
4
|
Wezel F, Lustig J, Azoitei A, Liu J, Meessen S, Najjar G, Zehe V, Faustmann P, Zengerling F, John A, Martini T, Bolenz C, Günes C. Grainyhead-Like 3 Influences Migration and Invasion of Urothelial Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22062959. [PMID: 33803949 PMCID: PMC8000182 DOI: 10.3390/ijms22062959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Invasive urothelial carcinomas of the bladder (UCB) characteristically show a loss of differentiation markers. The transcription factor Grainyhead-like 3 (GRHL3) plays an important role in the development and differentiation of normal urothelium. The contribution to UCB progression is still elusive. Differential expression of GRHL3 was assessed in normal human urothelium and in non-invasive and invasive bladder cancer cell lines. The contribution of GRHL3 to cell proliferation, viability and invasion in UCB cell lines was determined by gain- and loss-of-function assays in vitro and in an organ culture model using de-epithelialized porcine bladders. GRHL3 expression was detectable in normal human urothelial cells and showed significantly higher mRNA and protein levels in well-differentiated, non-invasive RT4 urothelial carcinoma cells compared to moderately differentiated RT112 cells. GRHL3 expression was absent in anaplastic and invasive T24 cells. Ectopic de novo expression of GRHL3 in T24 cells significantly impaired their migration and invasion properties in vitro and in organ culture. Its downregulation improved the invasive capacity of RT4 cells. The results indicate that GRHL3 may play a role in progression and metastasis in UCB. In addition, this work demonstrates that de-epithelialized porcine bladder organ culture can be a useful, standardized tool to assess the invasive capacity of cancer cells.
Collapse
|
5
|
Zupančič D, Korać-Prlić J, Kreft ME, Franković L, Vilović K, Jeruc J, Romih R, Terzić J. Vitamin A Rich Diet Diminishes Early Urothelial Carcinogenesis by Altering Retinoic Acid Signaling. Cancers (Basel) 2020; 12:1712. [PMID: 32605249 PMCID: PMC7407197 DOI: 10.3390/cancers12071712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Urinary bladder cancer is one of the leading malignancies worldwide, with the highest recurrence rates. A diet rich in vitamin A has proven to lower the risk of cancer, yet the molecular mechanisms underlying this effect are unknown. We found that vitamin A decreased urothelial atypia and apoptosis during early bladder carcinogenesis induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Vitamin A did not alter urothelial cell desquamation, differentiation, or proliferation rate. Genes like Wnt5a, involved in retinoic acid signaling, and transcription factors Pparg, Ppara, Rxra, and Hoxa5 were downregulated, while Sox9 and Stra6 were upregulated in early urothelial carcinogenesis. When a vitamin A rich diet was provided during BBN treatment, none of these genes was up- or downregulated; only Lrat and Neurod1 were upregulated. The lecithin retinol acyltransferase (LRAT) enzyme that produces all-trans retinyl esters was translocated from the cytoplasm to the nuclei in urothelial cells as a consequence of BBN treatment regardless of vitamin A rich diet. A vitamin A-rich diet altered retinoic acid signaling, decreased atypia and apoptosis of urothelial cells, and consequently diminished early urothelial carcinogenesis.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Jelena Korać-Prlić
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Lucija Franković
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| | - Katarina Vilović
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana,1000 Ljubljana, Slovenia; (D.Z.); (M.E.K.)
| | - Janoš Terzić
- Laboratory for Cancer Research, School of Medicine, University of Split, 21000 Split, Croatia; (J.K.-P.); (L.F.)
| |
Collapse
|
6
|
Baker SC, Arlt VM, Indra R, Joel M, Stiborová M, Eardley I, Ahmad N, Otto W, Burger M, Rubenwolf P, Phillips DH, Southgate J. Differentiation-associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic-metabolizing activity of "luminal" muscle-invasive bladder cancers. Mol Carcinog 2018; 57:606-618. [PMID: 29323757 PMCID: PMC5900743 DOI: 10.1002/mc.22784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022]
Abstract
Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain-of-function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle-invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into "luminal" and "basal" groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over-expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP-function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies.
Collapse
Affiliation(s)
- Simon C. Baker
- Jack Birch Unit of Molecular CarcinogenesisDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health EnglandFranklin‐Wilkins BuildingLondonUK
| | - Radek Indra
- Faculty of ScienceDepartment of BiochemistryCharles UniversityAlbertovPragueCzech Republic
| | - Madeleine Joel
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
| | - Marie Stiborová
- Faculty of ScienceDepartment of BiochemistryCharles UniversityAlbertovPragueCzech Republic
| | | | | | - Wolfgang Otto
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
| | - Maximilian Burger
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
- Department of UrologyFrankfurt University Medical Center, Johann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Peter Rubenwolf
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health EnglandFranklin‐Wilkins BuildingLondonUK
| | - Jennifer Southgate
- Jack Birch Unit of Molecular CarcinogenesisDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
7
|
Tuccori M, Convertino I, Galiulo MT, Marino A, Capogrosso-Sansone A, Blandizzi C. Diabetes drugs and the incidence of solid cancers: a survey of the current evidence. Expert Opin Drug Saf 2017; 16:1133-1148. [PMID: 28748718 DOI: 10.1080/14740338.2017.1361401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The evaluation of the relationship between the use of antidiabetic drug and the occurrence of cancer is extremely challenging, both from the clinical and pharmacoepidemiological standpoint. This narrative review described the current evidence supporting a relationship between the use of antidiabetic drugs and the incidence of solid cancers. Areas covered: Data from pharmacoepidemiological studies on cancer incidence were presented for the main antidiabetic drugs and drug classes, including human insulin and insulin analogues, metformin, sulfonylureas, glinides, alpha-glucosidase inhibitors, thiazolidinediones, incretin mimetics, and sodium glucose co-transporter 2 inhibitors. The relationship between the use of antidiabetics and the incidence of solid cancer was described in strata by any cancer and by organ-specific cancer and by drug and by drug classes. Information supporting biological evidence and putative mechanisms were also provided. Expert opinion: The history of exploration of the relationship between antidiabetic drugs and the risk of solid cancers has showed several issues. Unrecognized biases and misinterpretations of study results have had important consequences that delayed the identification of actual risk and benefits of the use of antidiabetic drugs associated with cancer occurrence or progression. The lesson learned from the past should address the future research in this area, since in the majority of cases findings are controversial and confirmatory studies are warranted.
Collapse
Affiliation(s)
- Marco Tuccori
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy
| | - Irma Convertino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Maria Teresa Galiulo
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Alessandra Marino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | | | - Corrado Blandizzi
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy.,b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
8
|
Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 2016; 6:27618. [PMID: 27283430 PMCID: PMC4901333 DOI: 10.1038/srep27618] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jay Truitt
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Morgan Merriman
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Olga Ponomareva
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kelly Jameson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura B Ferguson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
9
|
Kątnik-Prastowska I, Lis J, Matejuk A. Glycosylation of uroplakins. Implications for bladder physiopathology. Glycoconj J 2014; 31:623-36. [PMID: 25394961 PMCID: PMC4245495 DOI: 10.1007/s10719-014-9564-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
Urothelium, a specialized epithelium, covers the urinary tract and act not only as a barrier separating its light from the surrounding tissues, but fulfills an important role in maintaining the homeostasis of the urothelial tract and well-being of the whole organism. Proper function of urothelium is dependent on the precise assemble of highly specialized glycoproteins called uroplakins, the end products and differentiation markers of the urothelial cells. Glycosylation changes in uroplakins correlate with and might reflect progressive stages of pathological conditions of the urothelium such as cancer, urinary tract infections, interstitial cystitis and others. In this review we focus on sugar components of uroplakins, their emerging role in urothelial biology and disease implications. The advances in our understanding of uroplakins changes in glycan moieties composition, structure, assembly and expression of their glycovariants could potentially lead to the development of targeted therapies and discoveries of novel urine and plasma markers for the benefit of patients with urinary tract diseases.
Collapse
Affiliation(s)
- Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Bujwida 44a, 50-345, Wroclaw, Poland
| | | | | |
Collapse
|
10
|
Georgopoulos NT, Kirkwood LA, Southgate J. A novel bidirectional positive-feedback loop between Wnt-β-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci 2014; 127:2967-82. [PMID: 24816560 PMCID: PMC4077591 DOI: 10.1242/jcs.150888] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By operating as both a subunit of the cadherin complex and a key component of Wnt signalling, β-catenin acts as the lynchpin between cell–cell contact and transcriptional regulation of proliferation, coordinating epithelial tissue homeostasis and regeneration. The integration of multiple growth-regulatory inputs with β-catenin signalling has been observed in cancer-derived cells, yet the existence of pathway crosstalk in normal cells is unknown. Using a highly regenerative normal human epithelial culture system that displays contact inhibition, we demonstrate that the receptor tyrosine kinase (RTK)-driven MAPK and Wnt–β-catenin signalling axes form a bidirectional positive-feedback loop to drive cellular proliferation. We show that β-catenin both drives and is regulated by proliferative signalling cues, and its downregulation coincides with the switch from proliferation to contact-inhibited quiescence. We reveal a novel contextual interrelationship whereby positive and negative feedback between three major signalling pathways – EGFR–ERK, PI3K–AKT and Wnt–β-catenin – enable autocrine-regulated tissue homeostasis as an emergent property of physical interactions between cells. Our work has direct implications for normal epithelial tissue homeostasis and provides insight as to how dysregulation of these pathways could drive excessive and sustained cellular growth in disease.
Collapse
Affiliation(s)
- Nikolaos T Georgopoulos
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Lisa A Kirkwood
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
11
|
A peroxisome proliferator-activated receptor-δ agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neuroscience 2013; 240:191-203. [PMID: 23500098 PMCID: PMC3661980 DOI: 10.1016/j.neuroscience.2013.02.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/27/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ and PPARα have shown neuroprotective effects in models of Parkinson's disease (PD). The role of the third, more ubiquitous isoform PPARδ has not been fully explored. This study investigated the role of PPARδ in PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model the dopaminergic neurodegeneration of PD. In vitro administration of the PPARδ antagonist GSK0660 (1 μM) increased the detrimental effect of 1-methyl-4-phenylpyridinium iodide (MPP⁺) on cell viability, which was reversed by co-treatment with agonist GW0742 (1 μM). GW0742 alone did not affect MPP⁺ toxicity. PPARδ was expressed in the nucleus of dopaminergic neurons and in astrocytes. Striatal PPARδ levels were increased (over two-fold) immediately after MPTP treatment (30 mg/kg for 5 consecutive days) compared to saline-treated mice. PPARδ heterozygous mice were not protected against MPTP toxicity. Intra-striatal infusion of GW0742 (84 μg/day) reduced the MPTP-induced loss of dopaminergic neurons (5036±195) when compared to vehicle-infused mice (3953±460). These results indicate that agonism of PPARδ provides protection against MPTP toxicity, in agreement with the effects of other PPAR agonists.
Collapse
|
12
|
Aboushwareb T, McKenzie P, Wezel F, Southgate J, Badlani G. Is tissue engineering and biomaterials the future for lower urinary tract dysfunction (LUTD)/pelvic organ prolapse (POP)? Neurourol Urodyn 2011; 30:775-82. [PMID: 21661029 DOI: 10.1002/nau.21101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fields of tissue engineering and regenerative medicine have seen major advances over the span of the past two decades, with biomaterials playing a central role. Although the term "regenerative medicine" has been applied to encompass most fields of medicine, in fact urology has been one of the most progressive. Many urological applications have been investigated over the past decades, with the culmination of these technologies in the introduction of the first laboratory-produced organ to be placed in a human body.1 With the quality of life issues associated with urinary incontinence, there is a strong driver to identify and introduce new technologies and the potential exists for further major advancements from regenerative medicine approaches using biomaterials, cells or a combination of both. A central question is why use biomaterials? The answer rests on the need to make up for inadequate or lack of autologous tissue, to decrease morbidity and to improve long-term efficacy. Thus, the ideal biomaterial needs to meet the following criteria: (1) Provide mechanical and structural support, (2) Maintain compliance and be biocompatible with surrounding tissues, and (3) Be "fit for purpose" by meeting specific application needs ranging from static support to bioactive cell signaling. In essence, this represents a wide range of biomaterials with a spectrum of potential applications, from use as a supportive or bulking implant alone, to implanted biomaterials that promote integration and eventual replacement by infiltrating host cells, or scaffolds pre-seeded with cells prior to implant. In this review we shall discuss the structural versus the integrative uses of biomaterials by referring to two key areas in urology of (1) pelvic organ support for prolapse and stress urinary incontinence, and (2) bladder replacement/augmentation.
Collapse
|
13
|
Sato K, Awasaki Y, Kandori H, Tanakamaru ZY, Nagai H, Baron D, Yamamoto M. Suppressive effects of acid-forming diet against the tumorigenic potential of pioglitazone hydrochloride in the urinary bladder of male rats. Toxicol Appl Pharmacol 2011; 251:234-44. [PMID: 21255596 DOI: 10.1016/j.taap.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Pioglitazone hydrochloride (PIO), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, was administered orally for 85 weeks at 16 mg/kg/day to male rats fed either a diet containing 1.5% ammonium chloride (acid-forming diet) or a control diet to investigate the effects of urinary acidification induced by the acid-forming diet on the tumorigenic potential of PIO in the urinary bladder. The surviving animals at the end of the administration period were followed to the end of the 2-year study period without changes in the diet and were subjected to terminal necropsy on Week 104. The number of urinary microcrystals, evaluated by manual counting with light microscopy and by an objective method with a laser diffraction particle size analyzer, was increased by PIO on Weeks 12 and 25 and the increases were markedly suppressed by urinary acidification. Urinary citrate was decreased by PIO throughout the study period, but no changes were seen in urinary oxalate at any timepoint. The incidences of PIO-treated males bearing at least one of the advanced proliferative changes consisting of papillary hyperplasia, nodular hyperplasia, papilloma or carcinoma were significantly decreased from 11 of 82 males fed the control diet to 2 of 80 males fed the acid-forming diet. The acid-forming diet did not show any effects on the toxicokinetic parameters of PIO and its metabolites. Microcrystalluria appears to be involved in the development of the advanced stage proliferative lesions in bladder tumorigenesis induced by PIO in male rats.
Collapse
Affiliation(s)
- Keiichiro Sato
- Development Research Center, Takeda Pharmaceutical Company Limited, Osaka 532-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Egerod FL, Brünner N, Svendsen JE, Oleksiewicz MB. PPARalpha and PPARgamma are co-expressed, functional and show positive interactions in the rat urinary bladder urothelium. J Appl Toxicol 2010; 30:151-62. [PMID: 19757489 DOI: 10.1002/jat.1481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Some dual-acting PPARalpha + gamma agonists cause cancer in the rat urinary bladder, in some cases overrepresented in males, by a mechanism suggested to involve chronic stimulation of PPARalpha and PPARgamma, i.e. exaggerated pharmacology. By western blotting, we found that the rat urinary bladder urothelium expressed PPARalpha at higher levels than the liver and heart, and comparable to kidney. Urothelial expression of PPARgamma was above that of fat, heart, skeletal muscle and kidney. Male rats exhibited a higher PPARalpha/PPARgamma expression balance in the bladder urothelium than did female rats. Rats were treated by gastric gavage with rosiglitazone (PPARgamma agonist), fenofibrate (PPARalpha agonist) or a combination of rosiglitazone and fenofibrate for 7 days. In the urothelium, the transcription factor Egr-1 was induced to significantly higher levels in rats co-administered rosiglitazone and fenofibrate than in rats administered either rosiglitazone or fenofibrate alone. Egr-1 was also induced in the heart and liver of rats treated with fenofibrate, but a positive interaction between rosiglitazone and fenofibrate with regards to Egr-1 induction was only seen in the urothelium. Thus, in the rat urinary bladder urothelium, PPARalpha and PPARgamma were expressed at high levels, were functional and exhibited positive interactions. Interestingly, fenofibrate induced the peroxisome membrane protein PMP70 not only in liver, but also in the bladder urothelium, opening the possibility that oxidative stress may contribute to rat urothelial carcinogenesis by dual-acting PPARalpha + gamma agonists.
Collapse
|
15
|
Egerod FL, Svendsen JE, Hinley J, Southgate J, Bartels A, Brünner N, Oleksiewicz MB. PPAR alpha and PPAR gamma coactivation rapidly induces Egr-1 in the nuclei of the dorsal and ventral urinary bladder and kidney pelvis urothelium of rats. Toxicol Pathol 2010; 37:947-58. [PMID: 20008548 DOI: 10.1177/0192623309351723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To facilitate studies of the rat bladder carcinogenicity of dual-acting PPAR alpha+gamma agonists, we previously identified the Egr-1 transcription factor as a candidate carcinogenicity biomarker and developed rat models based on coadministration of commercially available specific PPAR alpha and PPAR gamma agonists. Immunohistochemistry for Egr-1 with a rabbit monoclonal antibody demonstrated that male vehicle-treated rats exhibited minimal urothelial expression and specifically, no nuclear signal. In contrast, Egr-1 was induced in the nuclei of bladder, as well as kidney pelvis, urothelia within one day (2 doses) of oral dosing of rats with a combination of 8 mg/kg rosiglitazone and 200 mg/kg fenofibrate (specific PPAR gamma and PPAR alpha agonists, respectively). These findings were confirmed by Western blotting using a different Egr-1 antibody. Egr-1 was induced to similar levels in the dorsal and ventral bladder urothelium, arguing against involvement of urinary solids. Egr-1 induction sometimes occurred in a localized fashion, indicating physiological microheterogeneity in the urothelium. The rapid kinetics supported that Egr-1 induction occurred as a result of pharmacological activation of PPAR alpha and PPAR gamma, which are coexpressed at high levels in the rat urothelium. Finally, our demonstration of a nuclear localization supports that the Egr-1 induced by PPAR alpha and PPAR gamma coactivation in the rat urothelium may be biologically active.
Collapse
|
16
|
Chopra B, Georgopoulos NT, Nicholl A, Hinley J, Oleksiewicz MB, Southgate J. Structurally diverse peroxisome proliferator-activated receptor agonists induce apoptosis in human uro-epithelial cells by a receptor-independent mechanism involving store-operated calcium channels. Cell Prolif 2009; 42:688-700. [PMID: 19614673 DOI: 10.1111/j.1365-2184.2009.00628.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Peroxisome proliferator-activated receptors (PPARs) are implicated in epithelial cell proliferation and differentiation, but investigation has been confounded by potential off-target effects of some synthetic PPAR ligands. Our aim was to determine mechanisms underlying the pro-apoptotic effect of synthetic PPAR agonists in normal human bladder uro-epithelial (urothelial) cells and to reconcile this with the role of PPARs in urothelial cytodifferentiation. MATERIALS AND METHODS Normal human urothelial (NHU) cells were grown as non-immortal lines in vitro and exposed to structurally diverse agonists ciglitazone, troglitazone, rosiglitazone (PPARgamma), ragaglitazar (PPARalpha/gamma), fenofibrate (PPARalpha) and L165041 (PPARbeta/delta). RESULTS NHU cells underwent apoptosis following acute exposure to ciglitazone, troglitazone or ragaglitazar, but not fenofibrate, L165041 or rosiglitazone, and this was independent of ERK or p38 MAP-kinase activation. Pro-apoptotic agonists induced sustained increases in intracellular calcium, whereas removal of extracellular calcium altered the kinetics of ciglitazone-mediated calcium release from sustained to transient. Cell death was accompanied by plasma-membrane disruption, loss of mitochondrial membrane-potential and caspase-9/caspase-3 activation. PPARgamma-mediated apoptosis was unaffected following pre-treatment with PPARgamma antagonist T0070907 and was strongly attenuated by store-operated calcium channel (SOC) inhibitors 2-APB and SKF-96365. CONCLUSIONS Our results provide a mechanistic basis for the ability of some PPAR agonists to induce death in NHU cells and demonstrate that apoptosis is mediated via PPAR-independent mechanisms, involving intracellular calcium changes, activation of SOCs and induction of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- B Chopra
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.
Collapse
|
18
|
Oleksiewicz MB, Southgate J, Iversen L, Egerod FL. Rat Urinary Bladder Carcinogenesis by Dual-Acting PPARalpha + gamma Agonists. PPAR Res 2009; 2008:103167. [PMID: 19197366 PMCID: PMC2632771 DOI: 10.1155/2008/103167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/07/2008] [Indexed: 12/25/2022] Open
Abstract
Despite clinical promise, dual-acting activators of PPARalpha and gamma (here termed PPARalpha+gamma agonists) have experienced high attrition rates in preclinical and early clinical development, due to toxicity. In some cases, discontinuation was due to carcinogenic effect in the rat urothelium, the epithelial layer lining the urinary bladder, ureters, and kidney pelvis. Chronic pharmacological activation of PPARalpha is invariably associated with cancer in rats and mice. Chronic pharmacological activation of PPARgamma can in some cases also cause cancer in rats and mice. Urothelial cells coexpress PPARalpha as well as PPARgamma, making it plausible that the urothelial carcinogenicity of PPARalpha+gamma agonists may be caused by receptor-mediated effects (exaggerated pharmacology). Based on previously published mode of action data for the PPARalpha+gamma agonist ragaglitazar, and the available literature about the role of PPARalpha and gamma in rodent carcinogenesis, we propose a mode of action hypothesis for the carcinogenic effect of PPARalpha+gamma agonists in the rat urothelium, which combines receptor-mediated and off-target cytotoxic effects. The proposed mode of action hypothesis is being explored in our laboratories, towards understanding the human relevance of the rat cancer findings, and developing rapid in vitro or short-term in vivo screening approaches to faciliate development of new dual-acting PPAR agonist compounds.
Collapse
Affiliation(s)
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5YW, UK
| | - Lars Iversen
- Biopharm Toxicology and Safety Pharmacology, Novo Nordisk A/S, 2760 Maalov, Denmark
| | | |
Collapse
|