1
|
Naylor SW, McInnes EF, Alibhai J, Burgess S, Baily J. Development of a Deep Learning Tool to Support the Assessment of Thyroid Follicular Cell Hypertrophy in the Rat. Toxicol Pathol 2025; 53:240-250. [PMID: 39825517 DOI: 10.1177/01926233241309328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy. This research project developed a deep learning image analysis solution that provides a quantitative score based on the morphological measurements of individual follicles that can be integrated into the standard pathology workflow. To achieve this, a U-Net convolutional deep learning neural network was used that not just identifies the various tissue components but also delineates individual follicles. Further steps to process the raw individual follicle data were developed using empirical models optimized to produce thyroid activity scores that were shown to be superior to the mean epithelial area approach when compared with pathologists' scores. These scores can be used for pathologist decision support using appropriate statistical methods to assess the presence or absence of low-grade thyroid hypertrophy at the group level.
Collapse
|
2
|
Arndt T, Keresztes M, Olivier B, Boone L, Chanut F, Ennulat D, Evans E, Freyberger A, Johannes S, Kuper CF, Maliver P, O'Brien P, Ramaiah L, Roman I, Strauss V, Vinken P, Walker D, Winter M, Pohlmeyer-Esch G, Tomlinson L. Considerations for the Identification and Conveyance of Clinical Pathology Findings in Preclinical Toxicity Studies: Results From the 9th ESTP International Expert Workshop. Toxicol Pathol 2024; 52:319-332. [PMID: 38661116 DOI: 10.1177/01926233241245108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The European Society of Toxicologic Pathology (ESTP) organized a panel of 24 international experts from many fields of toxicologic clinical pathology (e.g., industry, academia, and regulatory) that came together in 2021 to align the use of terminology to convey the importance of clinical pathology findings in preclinical toxicity studies. An additional goal consisted of how to identify important findings in standard and nonstandard clinical pathology associated endpoints. This manuscript summarizes the information and opinions discussed and shared at the ninth ESTP International Expert Workshop, April 5 to 6, 2022. In addition to terminology usage, the workshop considered topics related to the identification and conveyance of the importance of test item-related findings. These topics included sources of variability, comparators, statistics, reporting, correlations to other study data, nonstandard biomarkers, indirect/secondary findings, and an overall weight-of-evidence approach.
Collapse
Affiliation(s)
- Tara Arndt
- Altasciences Preclinical, Laval, Quebec, Canada
- Altasciences Preclinical, Seattle, Washington, USA
| | | | | | - L Boone
- Labcorp, Madison, Wisconsin, USA
| | | | - D Ennulat
- GlaxoSmithKline (Retired), King of Prussia, Pennsylvania, USA
| | - Ellen Evans
- Pfizer (Retired), Waterford, Connecticut, USA
| | | | | | | | - Pierre Maliver
- Roche Pharma Research and Early Development, Basel, Switzerland
| | | | - Lila Ramaiah
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Ian Roman
- GlaxoSmithKline, Ware, United Kingdom
| | | | | | - Dana Walker
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Michael Winter
- Roche Pharma Research and Early Development, Basel, Switzerland
| | | | | |
Collapse
|
3
|
Henderson RG, Welsh BT, Rogers JM, Borghoff SJ, Trexler KR, Bonn-Miller MO, Lefever TW. Reproductive and developmental toxicity evaluation of cannabidiol. Food Chem Toxicol 2023; 176:113786. [PMID: 37105390 DOI: 10.1016/j.fct.2023.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
An important data gap in determining a safe level of cannabidiol (CBD) intake for consumer use is determination of CBD's potential to cause reproductive or developmental toxicity. We conducted an OECD Test Guideline 421 GLP-compliant study in rats, with extended postnatal dosing and hormone analysis, where hemp-derived CBD isolate (0, 30, 100, or 300 mg/kg-bw/d) was administered orally. Treatment-related mortality, moribundity, and decreased body weight and food consumption were observed in high-dose F0 adult animals, consistent with severe maternal toxicity. No effects were observed on testosterone concentrations, F0 reproductive performance, or reproductive organs. Hepatocellular hypertrophy in the 100- and 300 mg/kg-bw/day groups correlated with hypertrophy/hyperplasia in the thyroid gland and changes in mean thyroid hormone concentrations in F0 animals. Mean gestation length was unaffected; however, total litter loss for two females and dystocia for two additional females in the high-dose group occurred. Other developmental effects were limited to lower mean pup weights in the 300 mg/kg-bw/d group than those of controls. The following NOAELs were identified for CBD isolate based on this study: 100 mg/kg-bw/d for F0 systemic toxicity and female reproductive toxicity, 300 mg/kg-bw/d for F0 male reproductive toxicity, and 100 mg/kg-bw/d for F1 neonatal and F1 generation toxicity.
Collapse
Affiliation(s)
| | | | - John M Rogers
- ToxStrategies, Inc., Research Triangle Park, NC, 27511, USA
| | | | | | | | | |
Collapse
|
4
|
Henderson RG, Lefever TW, Heintz MM, Trexler KR, Borghoff SJ, Bonn-Miller MO. Oral toxicity evaluation of cannabidiol. Food Chem Toxicol 2023; 176:113778. [PMID: 37105391 DOI: 10.1016/j.fct.2023.113778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Use of cannabidiol (CBD) in humans has increased considerably in recent years. While currently available studies suggest that CBD is relatively safe for human consumption, data from publicly available studies on CBD conducted according to modern testing guidelines are lacking. In the current study, the potential for toxicity following repeated oral exposure to hemp-derived CBD isolate was evaluated in male and female Sprague Dawley rats. No adverse treatment-related effects were observed following administration of CBD via oral gavage for 14 and 90 days at concentrations up to 150 and 140 mg/kg-bw/d, respectively. Microscopic liver and adrenal gland changes observed in the 90-day study were determined to be resolved after a 28-day recovery period. CBD was well tolerated at these dose levels, and the results of this study are comparable to findings reported in unpublished studies conducted with other CBD isolates. The current studies were conducted as part of a broader research program to examine the safety of CBD.
Collapse
|
5
|
Zhou J, De Jonghe S, Codd EE, Weiner S, Gallacher D, Stahle P, Kelley MF, Kuffner EK, Flores CM, Eichenbaum GE. Preclinical safety assessment of JNJ-10450232 (NTM-006), a structural analog of acetaminophen, that does not cause hepatotoxicity at supratherapeutic doses. Regul Toxicol Pharmacol 2023:105334. [PMID: 36608923 DOI: 10.1016/j.yrtph.2023.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
JNJ-10450232 (NTM-006) is a new molecular entity that is structurally related to acetaminophen. A comprehensive non-clinical safety program was conducted to support first-in-human and clinical efficacy studies based on preclinical data suggesting that the compound has comparable or enhanced antinociceptive and antipyretic efficacy without causing hepatotoxicity at supratherapeutic doses. No hepatic toxicity was noted in a mouse model sensitive to acetaminophen hepatotoxicity or in rats, dogs, and non-human primates in 28-day repeat dose toxicity studies at and above doses/exposures at which acetaminophen is known to cause hepatotoxicity. In the 28-day toxicity studies, all treatment-related findings were monitorable and reversible. Methemoglobinemia, which was observed in dogs and to a lesser extent in rats, is also observed with acetaminophen. This finding is considered not relevant to humans due to species differences in metabolism. Thyroid hypertrophy and hyperplasia were also observed in dogs and were shown to be a consequence of a species-specific UGT induction also demonstrated with increased thyroid hormone metabolism. Indirect bilirubin elevation was observed in rats as a result of UGT1A1 Inhibition. JNJ-10450232 (NTM-006) had no toxicologically relevant findings in safety pharmacology or genotoxicity studies. Together, these data supported progressing into safety and efficacy studies in humans.
Collapse
Affiliation(s)
- Junguo Zhou
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandra De Jonghe
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Ellen E Codd
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Sandy Weiner
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - David Gallacher
- Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Paul Stahle
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Edwin K Kuffner
- Johnson & Johnson Consumer Companies, Fort Washington, PA, USA.
| | | | - Gary E Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Wu NX, Deng LJ, Xiong F, Xie JY, Li XJ, Zeng Q, Sun JC, Chen D, Yang P. Risk of thyroid cancer and benign nodules associated with exposure to parabens among Chinese adults in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70125-70134. [PMID: 35581467 DOI: 10.1007/s11356-022-20741-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Parabens are widely used as preservatives, which have been found to affect thyroid function in toxicological studies. However, population studies on whether they are associated with thyroid tumors remain unclear. This study aims to investigate the relationship between environmental paraben exposure and thyroid cancer and benign nodules. We recruited participants from the Department of Thyroid and Breast Surgery at Wuhan Central Hospital, Wuhan, China. The detectable percentages of methyl paraben, ethyl paraben, and propyl paraben in the urinary samples of 425 study subjects were 99.1%, 95.3%, and 92.0%, respectively. All uncorrected and creatinine-corrected parabens were moderately correlated with one another. After adjusting for possible confounders, all three parabens were associated with an increased risk of thyroid cancer. Furthermore, the mixture pollutant analysis of parabens found positive associations with risk of thyroid cancer (OR = 0.24, 95% CI: 0.18, 0.31) and benign nodules (OR = 1.33, 95% CI: 0.86, 1.80). We observed that individual exposure to paraben mixtures may be associated with the risk of thyroid cancer and benign nodules.
Collapse
Affiliation(s)
- Nan-Xin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Feng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Jia-Chen Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
7
|
Bau-Gaudreault L, Arndt T, Provencher A, Brayton CF. Research-Relevant Clinical Pathology Resources: Emphasis on Mice, Rats, Rabbits, Dogs, Minipigs, and Non-Human Primates. ILAR J 2021; 62:203-222. [PMID: 34877602 DOI: 10.1093/ilar/ilab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Clinical pathology testing for investigative or biomedical research and for preclinical toxicity and safety assessment in laboratory animals is a distinct specialty requiring an understanding of species specific and other influential variables on results and interpretation. This review of clinical pathology principles and testing recommendations in laboratory animal species aims to provide a useful resource for researchers, veterinary specialists, toxicologists, and clinical or anatomic pathologists.
Collapse
Affiliation(s)
- Liza Bau-Gaudreault
- Clinical Laboratories, Charles River Laboratories - ULC, Senneville, Quebec, Canada
| | - Tara Arndt
- Labcorp Drug Development, Madison, Wisconsin, United States
| | - Anne Provencher
- Clinical Laboratories, Charles River Laboratories - ULC, Sherbrooke, Quebec, Canada
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Bertani V, Blanck O, Guignard D, Schorsch F, Pischon H. Artificial Intelligence in Toxicological Pathology: Quantitative Evaluation of Compound-Induced Follicular Cell Hypertrophy in Rat Thyroid Gland Using Deep Learning Models. Toxicol Pathol 2021; 50:23-34. [PMID: 34670459 DOI: 10.1177/01926233211052010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Digital pathology has recently been more broadly deployed, fueling artificial intelligence (AI) application development and more systematic use of image analysis. Here, two different AI models were developed to evaluate follicular cell hypertrophy in hematoxylin and eosin-stained whole-slide-images of rat thyroid gland, using commercial AI-based-software. In the first, mean cytoplasmic area measuring approach (MCA approach), mean cytoplasmic area was calculated via several sequential deep learning (DL)-based algorithms including segmentation in microanatomical structures (separation of colloid and stroma from thyroid follicular epithelium), nuclear detection, and area measurements. With our additional second, hypertrophy area fraction predicting approach (HAF approach), we present for the first time DL-based direct detection of the histopathological change follicular cell hypertrophy in the thyroid gland with similar results. For multiple studies, increased output parameters (mean cytoplasmic area and hypertrophic area fraction) were shown in groups given different hypertrophy-inducing reference compounds in comparison to control groups. Quantitative results correlated with the gold standard of board-certified veterinary pathologists' diagnoses and gradings as well as thyroid hormone dependent gene expressions. Accuracy and repeatability of diagnoses and grading by pathologists are expected to be improved by additional evaluation of mean cytoplasmic area or direct detection of hypertrophy, combined with standard histopathological observations.
Collapse
Affiliation(s)
| | - Olivier Blanck
- Bayer CropScience SAS, Sophia Antipolis, Valbonne, France
| | - Davy Guignard
- Bayer CropScience SAS, Sophia Antipolis, Valbonne, France
| | | | | |
Collapse
|
9
|
Huisinga M, Bertrand L, Chamanza R, Damiani I, Engelhardt J, Francke S, Freyberger A, Harada T, Harleman J, Kaufmann W, Keane K, Köhrle J, Lenz B, Marty MS, Melching-Kollmuss S, Palazzi X, Pohlmeyer-Esch G, Popp A, Rosol TJ, Strauss V, Van den Brink-Knol H, Wood CE, Yoshida M. Adversity Considerations for Thyroid Follicular Cell Hypertrophy and Hyperplasia in Nonclinical Toxicity Studies: Results From the 6th ESTP International Expert Workshop. Toxicol Pathol 2021; 48:920-938. [PMID: 33334259 DOI: 10.1177/0192623320972009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Society of Toxicologic Pathology organized an expert workshop in May 2018 to address adversity considerations related to thyroid follicular cell hypertrophy and/or hyperplasia (FCHH), which is a common finding in nonclinical toxicity studies that can have important implications for risk assessment of pharmaceuticals, food additives, and environmental chemicals. The broad goal of the workshop was to facilitate better alignment in toxicologic pathology and regulatory sciences on how to determine adversity of FCHH. Key objectives were to describe common mechanisms leading to thyroid FCHH and potential functional consequences; provide working criteria to assess adversity of FCHH in context of associated findings; and describe additional methods and experimental data that may influence adversity determinations. The workshop panel was comprised of representatives from the European Union, Japan, and the United States. Participants shared case examples illustrating issues related to adversity assessments of thyroid changes. Provided here are summary discussions, key case presentations, and panel recommendations. This information should increase consistency in the interpretation of adverse changes in the thyroid based on pathology findings in nonclinical toxicity studies, help integrate new types of biomarker data into the review process, and facilitate a more systematic approach to communicating adversity determinations in toxicology reports.
Collapse
Affiliation(s)
| | - Lise Bertrand
- 57146Charles River Laboratories, Saint-Germain-Nuelles, France
| | - Ronnie Chamanza
- 50148Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | - Sabine Francke
- Center for Food Safety and Applied Nutrition (CFSAN), 4137US Food and Drug Administration, College Park, MD, USA
| | | | | | | | | | | | - Josef Köhrle
- 72217Charité University Medicine Berlin, Berlin, Germany
| | - Barbara Lenz
- Roche Pharma Research and Development, Basel, Switzerland
| | - M Sue Marty
- 540144The Dow Chemical Company, Midland, MI, USA
| | | | | | | | | | | | | | | | - Charles E Wood
- 6893Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | |
Collapse
|
10
|
Yamauchi H, Andou T, Watanabe T, Gotou M, Anayama H. Quantitative protein profiling of phenobarbital-induced drug metabolizing enzymes in rat liver by liquid chromatography mass spectrometry using formalin-fixed paraffin-embedded samples. J Pharmacol Toxicol Methods 2021; 112:107107. [PMID: 34363961 DOI: 10.1016/j.vascn.2021.107107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Administration of a compound can induce drug-metabolizing enzymes (DMEs) in the liver. DME induction can affect various parameters in toxicology studies. Therefore, evaluation of DME induction is important for interpreting test compound-induced biological responses. Several methods such as measurement of hepatic microsomal DME activity using substrates, electron microscopy, or immunohistochemistry have been used; however, these methods are limited in throughput and specificity or are not quantitative. Liquid chromatography mass spectrometry (LC/MS)-based protein analysis can detect and quantify multiple proteins simultaneously per assay. Studies have shown that formalin-fixed paraffin-embedded (FFPE) samples, which are routinely collected in toxicology studies, can be used for LC/MS-based protein analysis. To validate the utility of LC/MS using FFPE samples for quantitative evaluation of DME induction, we treated rats with a DME inducer, phenobarbital, and compared the protein expression levels of 13 phase-I and 11 phase-II DMEs between FFPE and fresh frozen hepatic samples using LC/MS. A good correlation between data from FFPE and frozen samples was obtained after analysis. In FFPE and frozen samples, the expression of 6 phase-I and 8 phase-II DMEs showed a similar significant increase and a prominent rise in Cyp2b2 and Cyp3a1 levels. In addition, LC/MS data were consistent with the measurement of microsomal DME activities. These results suggest that LC/MS-based protein expression analysis using FFPE samples is as effective as that using frozen samples for detecting DME induction.
Collapse
Affiliation(s)
- Hirofumi Yamauchi
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tomohiro Andou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Watanabe
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masamitsu Gotou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hisashi Anayama
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
11
|
Ishida K, Werner JA, Davies R, Fan F, Thomas B, Wahlstrom J, Lipford JR, Monticello T. Nonclinical Safety Profile of Sotorasib, a KRAS G12C-Specific Covalent Inhibitor for the Treatment of KRAS p.G12C-Mutated Cancer. Int J Toxicol 2021; 40:427-441. [PMID: 34137282 DOI: 10.1177/10915818211022965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sotorasib is a first-in-class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. A comprehensive nonclinical safety assessment package, including secondary/safety pharmacology and toxicology studies, was conducted to support the marketing application for sotorasib. Sotorasib was negative in a battery of genotoxicity assays and negative in an in vitro phototoxicity assay. Based on in vitro assays, sotorasib had no off-target effects against various receptors, enzymes (including numerous kinases), ion channels, or transporters. Consistent with the tumor-specific target distribution (ie, KRASG12C), there were no primary pharmacology-related on-target effects identified. The kidney was identified as a target organ in the rat but not the dog. Renal toxicity in the rat was characterized by tubular degeneration and necrosis restricted to a specific region suggesting that the toxicity was attributed to the local formation of a putative toxic reactive metabolite. In the 3-month dog study, adaptive changes of hepatocellular hypertrophy due to drug metabolizing enzyme induction were observed in the liver that was associated with secondary effects in the pituitary and thyroid gland. Sotorasib was not teratogenic and had no direct effect on embryo-fetal development in the rat or rabbit. Human, dog, and rat circulating metabolites, M24, M10, and M18, raised no clinically relevant safety concerns based on the general toxicology studies, primary/secondary pharmacology screening, an in vitro human ether-à-go-go-related gene assay, or mutagenicity assessment. Overall, the results of the nonclinical safety program support a high benefit/risk ratio of sotorasib for the treatment of patients with KRAS p.G12C-mutated tumors.
Collapse
Affiliation(s)
| | | | | | - Fan Fan
- Amgen Inc, Research, Thousand Oaks, CA, USA
| | | | | | | | | |
Collapse
|
12
|
Cha SB, Li Y, Bae JS, Song SW, Lee IC, Kim JC. Evaluation of 13-week subchronic toxicity of Platycodon grandiflorus (Jacq.) A.DC. root extract in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113621. [PMID: 33246125 DOI: 10.1016/j.jep.2020.113621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodi radix is widely used in traditional herbal medicine for bronchitis, asthma, pulmonary tuberculosis, hypertension, hyperlipidemia, and diabetes. However, data on safety of Platycodi radix are insufficient. AIM OF THE STUDY The present study was performed to evaluate the potential subchronic toxicity of Platycodi radix water extract through a 13-week repeated oral dose experiment in Sprague-Dawley rats. MATERIALS AND METHODS Forty male and 40 female rats were randomly assigned to four experimental groups: three treatment groups receiving 300, 1000, and 3000 mg/kg/day of Platycodi radix water extract and a vehicle control group receiving sterile distilled water for 13 weeks. RESULTS Repeated oral administration of the Platycodi radix water extract to rats resulted in an increased incidence of centrilobular hepatocellular hypertrophy in the liver, diffuse follicular cell hypertrophy in the thyroid gland, and squamous hyperplasia of the limiting ridge in the stomach at dose levels of ≥500 mg/kg/day of both genders. However, these findings are considered be adaptive non-adverse changes because these findings were observed without organ weight change or clinical pathology alterations. No treatment-related effects on clinical signs, body weight, food and water consumption, ophthalmic examination, urinalysis, hematology, serum biochemistry, necropsy findings, and organ weights were observed at any dose tested. CONCLUSION Under the present experimental conditions, the no-observed-adverse-effect level of the Platycodi radix water extract was considered to be ≥ 3000 mg/kg/day in rats, and no target organs were identified.
Collapse
Affiliation(s)
- Seung-Beom Cha
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162, Republic of Korea; College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yinghua Li
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162, Republic of Korea.
| | - Jin-Sook Bae
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162, Republic of Korea.
| | - Si-Whan Song
- Nonclinical Research Center, ChemOn Inc., Yongin, 17162, Republic of Korea.
| | - In-Chul Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
13
|
Pischon H, Mason D, Lawrenz B, Blanck O, Frisk AL, Schorsch F, Bertani V. Artificial Intelligence in Toxicologic Pathology: Quantitative Evaluation of Compound-Induced Hepatocellular Hypertrophy in Rats. Toxicol Pathol 2021; 49:928-937. [PMID: 33397216 DOI: 10.1177/0192623320983244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Digital pathology evolved rapidly, enabling more systematic usage of image analysis and development of artificial intelligence (AI) applications. Here, combined AI models were developed to evaluate hepatocellular hypertrophy in rat liver, using commercial AI-based software on hematoxylin and eosin-stained whole slide images. In a first approach, deep learning-based identification of critical tissue zones (centrilobular, midzonal, and periportal) enabled evaluation of region-specific cell size. Mean cytoplasmic area of hepatocytes was calculated via several sequential algorithms including segmentation in microanatomical structures (separation of sinusoids and vessels from hepatocytes), nuclear detection, and area measurements. An increase in mean cytoplasmic area could be shown in groups given phenobarbital, known to induce hepatocellular hypertrophy when compared to control groups, in multiple studies. Quantitative results correlated with the gold standard: observation and grading performed by board-certified veterinary pathologists, liver weights, and gene expression. Furthermore, as a second approach, we introduce for the first time deep learning-based direct detection of hepatocellular hypertrophy with similar results. Cell hypertrophy is challenging to pick up, particularly in milder cases. Additional evaluation of mean cytoplasmic area or direct detection of hypertrophy, combined with histopathological observations and liver weights, is expected to increase accuracy and repeatability of diagnoses and grading by pathologists.
Collapse
Affiliation(s)
- Hannah Pischon
- 483305Nuvisan Pharma Grafing GmbH, Bayer AG, Berlin, Germany.,Nuvisan ICB GmbH, Berlin, Germany
| | | | - Bettina Lawrenz
- 483305Nuvisan Pharma Grafing GmbH, Bayer AG, Wuppertal, Germany
| | - Olivier Blanck
- 55075Bayer CropScience SAS, Sophia Antipolis, Valbonne, France
| | - Anna-Lena Frisk
- 483305Nuvisan Pharma Grafing GmbH, Bayer AG, Berlin, Germany.,Janssen Pharmaceutica, Beerse, Belgium
| | | | - Valeria Bertani
- 55075Bayer CropScience SAS, Sophia Antipolis, Valbonne, France
| |
Collapse
|
14
|
Phipps KR, Danielewska-Nikiel B, Mushonganono J, Baldwin N. Reproductive and developmental toxicity screening study of an acetone extract of rosemary. Regul Toxicol Pharmacol 2020; 120:104840. [PMID: 33321148 DOI: 10.1016/j.yrtph.2020.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
In 2017, JECFA requested reproductive and developmental toxicity studies to finalize an acceptable daily intake for solvent rosemary extracts. Thus, an OECD 421 reproductive/developmental toxicity study was conducted using an acetone rosemary extract that complied with JECFA and EFSA food additive specifications. Rosemary extract was provided to rats at dietary concentrations of 0 (control), 2100, 3600, or 5000 mg/kg, for 14 days before mating, during mating, and thereafter (throughout gestation and up to Lactation Day 13 for females) until necropsy. General toxicity (clinical signs, body weight, food consumption) and reproductive/developmental outcomes (fertility and mating performance, estrous cycles, anogenital distance, thyroid hormones, reproductive organ weights, thyroid histopathology) were assessed. There were no signs of general toxicity and no effects on reproduction; thus, the highest concentration tested (equivalent to mean daily intakes of 316 or 401 mg/kg bw/day [149 or 189 mg/kg bw/day carnosol and carnosic acid] for males and females, respectively) was established as the no-observed-adverse-effect level for general and reproductive toxicity. Dose-related reductions in T4 were observed for Day 13 pups (not seen on Day 4) but were not accompanied by thyroid weight changes or histopathological findings; further investigations are required to determine the biological relevance of these T4 reductions.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK.
| | | | - Jessica Mushonganono
- Intertek Health Sciences Inc, 2233 Argentia Road, Suite 201, Mississauga, Ontario, Canada
| | - Nigel Baldwin
- Intertek Health Sciences Inc, Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, UK
| |
Collapse
|
15
|
Strupp C, Quesnot N, Weber-Parmentier C, Richert L, Bomann WH, Singh P. Weight of Evidence and Human Relevance Evaluation of the Benfluralin Mode of Action in Rats (Part II): Thyroid carcinogenesis. Regul Toxicol Pharmacol 2020; 117:104736. [PMID: 32798613 DOI: 10.1016/j.yrtph.2020.104736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Benfluralin is an herbicide of the dinitroaniline class used to control grasses and weeds. In a 2 year dietary study in rats, benfluralin increased incidences of thyroid follicular adenoma and carcinoma at high dietary concentrations (≥2500 ppm). The benfluralin toxicology database suggests the mode of action (MOA) is initiated by induction of liver metabolizing enzymes, particularly thyroid hormone specific UGTs, a major pathway for T4 clearance in rats. As reported with phenobarbital, this effect triggers negative feedback regulation, increasing thyroid stimulating hormone (TSH) release into circulating blood. When sustained over time, this leads to thyroid changes such as follicular hypertrophy, hyperplasia and thyroid follicular tumors with chronic exposures. The described MOA was previously established in rat studies with various chemical activators of xenobiotic receptors in the liver. It is generally considered as non-relevant in humans, due to differences between humans and rats in T4 turnover and susceptibility to this carcinogenic MOA. A structured methodology based on the IPCS/MOA/Human Relevance framework was used in the evaluation of available benfluralin data, and the conclusion was determined that the carcinogenic potential of benfluralin in the thyroid is not relevant in humans.
Collapse
Affiliation(s)
- Christian Strupp
- Gowan, Highlands House, Basingstoke Road, Spencers Wood Reading, Berkshire, RG7 1NT, United Kingdom.
| | - Nicolas Quesnot
- Charles River Laboratories Evreux, 27005, Evreux Cedex, France.
| | | | | | - Werner H Bomann
- ToxConsult®, 9393 W 110th Street, 51 Corporate Woods, Suite 500, Overland Park, KS, 66210, USA.
| | - Pramila Singh
- Charles River Laboratories Evreux, 27005, Evreux Cedex, France.
| |
Collapse
|
16
|
Hernández AF, Bennekou SH, Hart A, Mohimont L, Wolterink G. Mechanisms underlying disruptive effects of pesticides on the thyroid function. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
White MR, Graziano MJ, Sanderson TP. Toxicity of Pexacerfont, a Corticotropin-Releasing Factor Type 1 Receptor Antagonist, in Rats and Dogs. Int J Toxicol 2019; 38:110-120. [DOI: 10.1177/1091581819827501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pexacerfont is a corticotropin-releasing factor subtype 1 receptor antagonist that was developed for the treatment of anxiety- and stress-related disorders. This report describes the results of repeat-dose oral toxicity studies in rats (3 and 6 months) and dogs (3 months and 1 year). Pexacerfont was well tolerated in all of these studies at exposures equal to or greater than areas under the curve in humans (clinical dose of 100 mg). Microscopic changes in the liver (hepatocellular hypertrophy), thyroid glands (hypertrophy/hyperplasia and adenomas of follicular cells), and pituitary (hypertrophy/hyperplasia and vacuolation of thyrotrophs) were only observed in rats and were considered adaptive changes in response to hepatic enzyme induction and subsequent alterations in serum thyroid hormone levels. Evidence for hepatic enzyme induction in dogs was limited to increased liver weights and reduced thyroxine (T4) levels. Mammary gland hyperplasia and altered female estrous cycling were only observed in rats, whereas adverse testicular effects (consistent with minimal to moderate degeneration of the germinal epithelium) were only noted following chronic dosing in dogs. The testicular effects were reversible changes with exposure margins of 8× at the no observed adverse effect level. It is not clear whether the changes in mammary gland, estrous cycling, and testes represent secondary hormonal changes due to perturbation of the hypothalamic–pituitary–adrenal axis or are off-target effects. In conclusion, the results of chronic toxicity studies in rats and dogs show that pexacerfont has an acceptable safety profile to support further clinical testing.
Collapse
|
18
|
Brändli-Baiocco A, Balme E, Bruder M, Chandra S, Hellmann J, Hoenerhoff MJ, Kambara T, Landes C, Lenz B, Mense M, Rittinghausen S, Satoh H, Schorsch F, Seeliger F, Tanaka T, Tsuchitani M, Wojcinski Z, Rosol TJ. Nonproliferative and Proliferative Lesions of the Rat and Mouse Endocrine System. J Toxicol Pathol 2018; 31:1S-95S. [PMID: 30158740 PMCID: PMC6108091 DOI: 10.1293/tox.31.1s] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is a joint initiative among
the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan
(JSTP) and North America (STP) to develop an internationally accepted nomenclature for
proliferative and nonproliferative lesions in laboratory animals. The purpose of this
publication is to provide a standardized nomenclature for classifying microscopic lesions
observed in the endocrine organs (pituitary gland, pineal gland, thyroid gland,
parathyroid glands, adrenal glands and pancreatic islets) of laboratory rats and mice,
with color photomicrographs illustrating examples of the lesions. The standardized
nomenclature presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous and aging lesions as well as lesions induced by exposure to test materials. A
widely accepted and utilized international harmonization of nomenclature for endocrine
lesions in laboratory animals will decrease confusion among regulatory and scientific
research organizations in different countries and provide a common language to increase
and enrich international exchanges of information among toxicologists and
pathologists.
Collapse
Affiliation(s)
- Annamaria Brändli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Marc Bruder
- Compugen, Inc., Nonclinical Safety, South San Francisco, California, USA
| | | | | | - Mark J Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan USA
| | | | - Christian Landes
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | | | - Hiroshi Satoh
- Iwate University, Faculty of Agriculture, Iwate, Japan
| | | | - Frank Seeliger
- AstraZeneca Pathology, Drug Safety and Metabolism, IMED Biotech Unit, Gothenburg, Sweden
| | - Takuji Tanaka
- Tohkai Cytopathology Institute, Cancer Research and Prevention, Gifu, Japan
| | - Minoru Tsuchitani
- LSI Medience Corporation, Nonclinical Research Center, Ibaraki, Japan
| | | | - Thomas J Rosol
- Ohio University, Department of Biomedical Sciences, Athens, Ohio, USA
| |
Collapse
|
19
|
Sathyapalan T, Köhrle J, Rijntjes E, Rigby AS, Dargham SR, Kilpatrick ES, Atkin SL. The Effect of High Dose Isoflavone Supplementation on Serum Reverse T 3 in Euthyroid Men With Type 2 Diabetes and Post-menopausal Women. Front Endocrinol (Lausanne) 2018; 9:698. [PMID: 30524380 PMCID: PMC6262038 DOI: 10.3389/fendo.2018.00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Background: The health benefits of soy are widely reported but there are queries on the effect of soy isoflavones on thyroid function and the underlying mechanism of action. Materials and Methods: We examined the effect of soy isoflavones on reverse tri-iodothyronine (or 3,3',5'-tri-iodothyronine; rT3) in two studies comprising 400 patients: 200 men (study 1; 3 months) and 200 post-menopausal women (study 2; 6 months) who were randomized to consume 15 g soy protein with 66 mg of isoflavones (SPI) daily, or 15 g soy protein alone without isoflavones (SP) daily. Results: SPI supplementation increased rT3 serum concentration in both men 0.41 (0.12) vs. 0.45 (0.14) nmol/L and women 0.33 (0.12) vs. 0.37 (0.09) nmol/L at 3 months compared to SP that was not seen at 6 months. Thyroid stimulating hormone (TSH) serum concentrations increased while free thyroxine (fT4) concentrations decreased with 3 months of SPI compared to SP supplementation for both men and women. rT3 correlated with TSH in both studies (p = 0.03) but not with either fT3 or fT4. fT3 levels did not differ between the SPI and SP preparations. Conclusion: Soy isoflavones transiently increased rT3 levels within 3 months though reverted to baseline at 6 months. The mechanism for this would be either rT3 degrading deiodinase 1 and/or deiodinase 2 activities are transiently inhibited at 3 months, or inhibition of deiodinase 3, which generates rT3 from T4 is induced at 6 months. These changes were mirrored in the TSH concentrations, suggesting that short-term high dose isoflavone transiently impairs thyroid function in the first 3 months and may impact on general health during this period. ISRCTN Registry: ISRCTN 90604927; ISRCTN34051237.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin Institute of Health, CVK, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alan S. Rigby
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Eric S. Kilpatrick
- Department of Clinical Chemistry, Sidra Medical and Research Center, Doha, Qatar
| | - Stephen L. Atkin
- Weill Cornell Medical College Qatar, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
20
|
Fowles JR, Banton MI, Boogaard PJ, Ketelslegers HB, Rohde AM. Assessment of petroleum streams for thyroid toxicity. Toxicol Lett 2016; 254:52-62. [DOI: 10.1016/j.toxlet.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/22/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
21
|
Asaoka Y, Togashi Y, Mutsuga M, Imura N, Miyoshi T, Miyamoto Y. Histopathological image analysis of chemical-induced hepatocellular hypertrophy in mice. ACTA ACUST UNITED AC 2016; 68:233-9. [DOI: 10.1016/j.etp.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/27/2022]
|
22
|
Kim MJ, Kwack SJ, Lim SK, Kim YJ, Roh TH, Choi SM, Kim HS, Lee BM. Toxicological evaluation of isopropylparaben and isobutylparaben mixture in Sprague-Dawley rats following 28 days of dermal exposure. Regul Toxicol Pharmacol 2015; 73:544-551. [PMID: 26359141 DOI: 10.1016/j.yrtph.2015.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/28/2015] [Accepted: 08/30/2015] [Indexed: 12/30/2022]
Abstract
The alkyl esters of p-hydroxybenzoic acid (Parabens) have been of concern due to their probable endocrine disrupting property especially in baby consumer products. The safety of parabens for use as a preservative in cosmetics has come into controversy, and thus consumer demand for paraben-free products is ever increasing. Thus, more comprehensive studies are needed to conclusively determine the safety of the multiple prolonged exposure to parabens with cosmetic ingredients. This study was conducted to investigate the potential repeated 28 days dermal toxicity (50, 100, 300, or 600 mg/kg bw/day) of isopropylparaben (IPP), isobutylparaben (IBP), or the mixture of IPP and IBP in rats. There were no significant changes in body and organ weights in any group. However, histopathological examinations showed that weak or moderate skin damages were observed in female rats by macroscopic and microscopic evaluations. In female rats, no observed adverse effect levels (NOAELs) of IPP with no skin lesion and IBP for skin hyperkeratosis, were estimated to be 600 mg/kg bw/day, and 50 mg/kg bw/day, respectively. With regard skin hyperkeratosis, the lowest observed adverse effect level (LOAEL) of the mixture of IPP and IBP was estimated to be 50 mg/kg bw/day. Analysis of six serum hormones (estrogen, testosterone, insulin, T3, TSH, or FSH) in animals showed that only FSH was dose-dependently decreased in the mixture groups of 100 mg/kg bw/day or higher. These data suggest that the mixture of IPP and IBP showed a synergistic dermal toxicity in rats and should be considered for future use in consumer products.
Collapse
Affiliation(s)
- Min Ji Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Seung Jun Kwack
- Department of Biochemistry and Health Science, College of Natural Sciences, Changwon National University, 92 Toechonro, Uichang-gu, Changwon, Gyeongnam 641-773, South Korea
| | - Seong Kwang Lim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Yeon Joo Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Tae Hyun Roh
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Seul Min Choi
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea.
| | - Byung Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, South Korea.
| |
Collapse
|
23
|
Chen JJ, Liu Q, Yuan C, Gore V, Lopez P, Ma V, Amegadzie A, Qian W, Judd TC, Minatti AE, Brown J, Cheng Y, Xue M, Zhong W, Dineen TA, Epstein O, Human J, Kreiman C, Marx I, Weiss MM, Hitchcock SA, Powers TS, Chen K, Wen PH, Whittington DA, Cheng AC, Bartberger MD, Hickman D, Werner JA, Vargas HM, Everds NE, Vonderfecht SL, Dunn RT, Wood S, Fremeau RT, White RD, Patel VF. Development of 2-aminooxazoline 3-azaxanthenes as orally efficacious β-secretase inhibitors for the potential treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:767-74. [DOI: 10.1016/j.bmcl.2014.12.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/25/2023]
|
24
|
Nambiar PR, Morton D, Dochterman LW, Houle C, Thomford PJ, Fate G, Bailey SA, Finch GL. Two-year Carcinogenicity Study in Rats with a Nonnucleoside Reverse Transcriptase Inhibitor. Toxicol Pathol 2014; 43:354-65. [DOI: 10.1177/0192623314544381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Administration of lersivirine, a nonnucleotide reverse transcriptase inhibitor, daily by oral gavage to Sprague-Dawley rats for up to 2 yr was associated with decreased survival, decreased body weights, and an increase in neoplasms and related proliferative lesions in the liver, thyroid, kidney, and urinary bladder. Thyroid follicular adenoma and carcinoma, the associated thyroid follicular hypertrophy/hyperplasia, hepatocellular adenoma/adenocarcinoma, altered cell foci, and hepatocellular hypertrophy were consistent with lersivirine-related induction of hepatic microsomal enzymes. Renal tubular adenoma and renal tubular hyperplasia were attributed to the lersivirine-related exacerbation of chronic progressive nephropathy (CPN), while urinary bladder hyperplasia and transitional cell carcinoma in the renal pelvis and urinary bladder were attributed to urinary calculi. Renal tubular neoplasms associated with increased incidence and severity of CPN, neoplasms of transitional epithelium attributed to crystalluria, and thyroid follicular and hepatocellular neoplasms related to hepatic enzyme induction have low relevance for human risk assessment.
Collapse
|
25
|
Garrido R, Zabka TS, Tao J, Fielden MR, Fretland AJ, Albassam M. Authors' response to letter to the editor on "image cytometry protocols". J Histochem Cytochem 2013; 61:761-2. [PMID: 24084868 PMCID: PMC3788630 DOI: 10.1369/0022155413502057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rosario Garrido
- Department of Pathology, Hoffmann-La Roche, Nutley, New Jersey (RG,AJF,MA)
| | | | | | | | | | | |
Collapse
|
26
|
Garrido R, Zabka TS, Tao J, Fielden M, Fretland A, Albassam M. Quantitative histological assessment of xenobiotic-induced liver enzyme induction and pituitary-thyroid axis stimulation in rats using whole-slide automated image analysis. J Histochem Cytochem 2013; 61:362-71. [PMID: 23456825 DOI: 10.1369/0022155413482926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preclinical evaluation of a new compound, RO2910, identified a hypertrophic response in liver, thyroid gland, and pituitary gland (pars distalis). We aimed to develop and validate automated image analysis methods to quantify and refine the interpretation of semi-quantitative histology. Wistar-Han rats were administered RO2910 for 14 days. Liver, thyroid, and pituitary gland tissues were processed for routine histology and immunolabeled with anti-thyroid stimulating hormone (TSH) antibody (pituitary) and anti-topoisomerase II antibody (thyroid). Glass slides were scanned, image analysis methods were developed and applied to whole-slide images, and numerical results were compared with histopathology, circulating hormone levels, and liver enzyme mRNA expression for validation. Quantitative analysis of slides had strong individual correlation with semi-quantitative histological evaluation of all tissues studied. Hepatocellular hypertrophy quantification also correlated strongly with liver enzyme mRNA expression. In the pars distalis, measurement of TSH weak-staining areas correlated with both hypertrophy scores and circulating TSH levels. Whole-slide image analysis enabled automated quantification of semi-quantitative histopathology findings and a more refined interpretation of these data. The analysis also enabled a direct correlation with non-histological parameters using straightforward statistical analysis to provide a more refined dose- and sex-response relationship and integration among affected parameters. These findings demonstrate the utility of our image analysis to support preclinical safety evaluations.
Collapse
Affiliation(s)
- Rosario Garrido
- Roche Pharmaceuticals, Nonclinical Safety, Nutley, New Jersey 07110, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Koeppe ES, Ferguson KK, Colacino JA, Meeker JD. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 445-446:299-305. [PMID: 23340023 PMCID: PMC3572338 DOI: 10.1016/j.scitotenv.2012.12.052] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 04/15/2023]
Abstract
Triclosan and parabens are broad spectrum antimicrobials used in a range of consumer products. In vitro and animal studies have suggested the potential for these compounds to disrupt thyroid function, though studies in humans have been limited. The objective of the study was to assess the relationship of urinary concentrations of triclosan and parabens with serum thyroid measures in a large, representative sample of the US population. We conducted an exploratory, cross-sectional analysis of data on urinary biomarkers of triclosan and paraben exposure and serum thyroid measures obtained from 1831 subjects (ages≥12 years) as part of the 2007-2008 National Health and Nutrition Examination Survey (NHANES). We found evidence of some inverse associations between parabens and circulating thyroid hormone levels in adults, with the strongest and most consistent associations among females. We also observed a positive association between triclosan and total triiodothyonine (T3) concentrations in adolescents. These results, in accordance with the in vitro and animal literature, suggest that paraben, and potentially triclosan, exposures may be associated with altered thyroid hormone levels in humans. Further research is needed for confirmation and to determine the potential clinical and public health significance of these findings.
Collapse
Affiliation(s)
- Erika S. Koeppe
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Kelly K. Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health Ann Arbor, MI
| |
Collapse
|
28
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:328-37. [PMID: 22760515 DOI: 10.1097/med.0b013e3283567080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, Küttler K, Malarkey DE, Maronpot RR, Nishikawa A, Nolte T, Schulte A, Strauss V, York MJ. Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes--conclusions from the 3rd International ESTP Expert Workshop. Toxicol Pathol 2012; 40:971-94. [PMID: 22723046 DOI: 10.1177/0192623312448935] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preclinical toxicity studies have demonstrated that exposure of laboratory animals to liver enzyme inducers during preclinical safety assessment results in a signature of toxicological changes characterized by an increase in liver weight, hepatocellular hypertrophy, cell proliferation, and, frequently in long-term (life-time) studies, hepatocarcinogenesis. Recent advances over the last decade have revealed that for many xenobiotics, these changes may be induced through a common mechanism of action involving activation of the nuclear hormone receptors CAR, PXR, or PPARα. The generation of genetically engineered mice that express altered versions of these nuclear hormone receptors, together with other avenues of investigation, have now demonstrated that sensitivity to many of these effects is rodent-specific. These data are consistent with the available epidemiological and empirical human evidence and lend support to the scientific opinion that these changes have little relevance to man. The ESTP therefore convened an international panel of experts to debate the evidence in order to more clearly define for toxicologic pathologists what is considered adverse in the context of hepatocellular hypertrophy. The results of this workshop concluded that hepatomegaly as a consequence of hepatocellular hypertrophy without histologic or clinical pathology alterations indicative of liver toxicity was considered an adaptive and a non-adverse reaction. This conclusion should normally be reached by an integrative weight of evidence approach.
Collapse
Affiliation(s)
- A P Hall
- AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang Y, Ciurlionis R, Kowalkowski K, Marsh KC, Bracken WM, Blomme EA. N-vinylpyrrolidone dimer, a novel formulation excipient, causes hepatic and thyroid hypertrophy through the induction of hepatic microsomal enzymes in rats. Toxicol Lett 2012; 208:82-91. [DOI: 10.1016/j.toxlet.2011.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
|