1
|
Ehghaghi A, Zokaei E, Modarressi MH, Tavoosidana G, Ghafouri-Fard S, Khanali F, Motevaseli E, Noroozi Z. Antioxidant and anti-apoptotic effects of selenium nanoparticles and Lactobacillus casei on mice testis after X-ray. Andrologia 2022; 54:e14591. [PMID: 36266770 DOI: 10.1111/and.14591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Radiation can lead to various damages in the process of spermatogenesis that lead to a decrease in the number of sperm, an increase in spermatogenesis disorders, and defective sperm function. Radioprotectors are considered a good approach to reducing the damage caused by radiation. The goal of this work was to study how X-ray radiation affects testicular tissue and the process of spermatogenesis, as well as the radioprotective effects of selenium nanoparticles (SeNPs) and Lactobacillus casei (L. casei) as probiotic compounds, given alone or together. This study included 64 adult Syrian male mice weighing approximately 20 ± 5 g and aged 10 ± 1 weeks. Animals were randomly divided into eight groups: control group, SeNPs, probiotic, SeNPs and probiotic, X-ray radiation, SeNPs (X-ray), probiotic (X-ray), and SeNPs and probiotic (X-ray). Histology parameters and levels of oxidative stress biomarkers such as catalase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were examined. In addition, the level of apoptosis was measured in testicular cells that had been treated with SeNPs and L. casei as a probiotic. The results showed that the administration of SeNPs or probiotic diminished the effects of X-ray radiation. These compounds induced a significant decreased in malondialdehyde, caspase 3, and caspase 9 gene levels and a remarkable increased in catalase, superoxide dismutase, and Catsper gene expression. SeNPs and probiotic exhibited a potent antioxidant effect and elevated the mean number of spermatogonia cells, sperm cell count, spermatogenesis percentage, and sperm motility percentage. The prescribed compound exhibited an ideal radioprotective effect with the ability to reduce the side effects of ionizing radiation and to protect normal tissues. SeNPs and probiotic inhibit testicular injury and improve the antioxidant state in male mice.
Collapse
Affiliation(s)
- Alireza Ehghaghi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faeze Khanali
- Department of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xu Y, Jiang S, Hu Y, Zhang Q, Su W. TGF-β3 induces lactate production in Sertoli cell through inhibiting Notch pathway. Andrology 2022; 10:1644-1659. [PMID: 36057850 DOI: 10.1111/andr.13288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUNDS In the testis, spermatocytes and spermatids rely on lactate produced by Sertoli cells (SCs) as energy source. TGF-β3 is one of the generally accepted paracrine regulatory factors of SC-created blood-testis barrier (BTB), yet its role in SC glycolysis and lactate production still remains unclear. OBJECTIVES To investigate the effect of TGF-β3 on glycolysis and lactate production in SCs and determine the role of Lgl2 and Notch signaling activity during this process. MATERIALS AND METHODS Primary cultured rat Sertoli cells and TM4 cells were treated with different concentrations of TGF-β3. In some experiments, cells were transfected with siRNA specifically targeting Lgl2 and then treated with TGF-β3 or DAPT. Lactate concentration, glucose and glutamine consumption in the culture medium, activity of PFK, LDH, and Gls, ATP level, oxygen consumption, extracellular acidification and mitochondrial respiration complex activity were detected using commercial kits. The protein level of Lgl2, LDH, MCT4, and activity of Akt, ERK, p38 MAPK, and Notch pathway were detected by Western blot. The stage-specific expression of Jagged1 was examined by immunohistochemistry and qPCR after LCM. Spermatogenesis in rat testis injected with recombinant Jagged1 (re-Jagged1) was observed by HE staining and lactate concentration in testis lysate was measured at different day point after re-Jagged1 treatment. RESULTS Significant enhancement of lactate concentration was detected in culture medium of both primary SCs and TM4 cells treated with TGF-β3 at 3 or 5 ng/ml. Besides, other parameters of glycolysis, i.e. glucose and Gln consumption, enzyme activity of PFK, LDH, and Gls, displayed different levels of increment in primary SCs and TM4 cells after TGF-β3 treatment. Mitochondria respiration of SCs was shown to decrease in response to TGF-β3. Lgl2, MCT4, activity of ERK and p38 MAPK were up-regulated, whereas Akt and Notch pathway activity were inhibited by TGF-β3. Silencing of Lgl2 in SCs affected lactate production and attenuated the above effects of TGF-β3 on SC glycolysis except for Gln consumption, Gls activity, and activity of Akt, ERK, and p38. DAPT treatment in SCs antagonized glycolysis suppression caused by Lgl2-silencing. In vivo analysis revealed a stage-specific expression of Jagged1 in contrary with TGF-β3. Activating Notch signaling by re-Jagged1 resulted in restorable hypospermatogenesis and lowered lactate level in rat testis. CONCLUSION TGF-β3 induces lactate production in Sertoli cell through upregulating Lgl2, which weakened the Notch signaling activity and intensified glycolysis in SCs. Thus, besides the known function of TGF-β3 as the BTB regulator, TGF-β3-Lgl2-Notch maybe considered as an important pathway controlling Sertoli cell glycolysis and spermatogenesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, 77 Puhe Road, Shenbei New District, Shen Yang, 110122, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 36 SanHao Street, Shenhe District, Shenyang, 110004, China
| | - Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, 77 Puhe Road, Shenbei New District, Shen Yang, 110122, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, 77 Puhe Road, Shenbei New District, Shen Yang, 110122, China
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, 77 Puhe Road, Shenbei New District, Shen Yang, 110122, China.,NHC Key Laboratory of Reproductive Health and Medical Genetics, Affiliated Reproductive Hospital of China Medical University, 10 Puhe Street, Huanggu District, Shenyang, 110084, China
| |
Collapse
|
3
|
Kato Y, Masago Y, Kondo C, Yogo E, Torii M, Hishikawa A, Izawa T, Kuwamura M, Yamate J. Comparison of Acute Gene Expression Profiles of Islet Cells Obtained via Laser Capture Microdissection between Alloxan- and Streptozotocin-treated Rats. Toxicol Pathol 2018; 46:660-670. [PMID: 29929439 DOI: 10.1177/0192623318783957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify the molecular profiles of islets from alloxan (ALX)- and streptozotocin (STZ)-treated rats, a microarray-based global gene expression analysis was performed on frozen islets isolated via laser capture microdissection. At 6 weeks old, rats were injected with ALX (40 mg/kg) or STZ (50 or 100 mg/kg) and then euthanized 24 hr later. Histopathological analysis showed β-cell necrosis, macrophage infiltration, and islet atrophy. The extent of these changes was more notable in the STZ groups than in the ALX group. Transcriptome analysis demonstrated a significant up- or downregulation of cell cycle arrest-related genes in the p53 signaling pathway. Cyclin D2 and cyclin-dependent kinase inhibitor 1A, mediators of G1 arrest, were remarkably altered in STZ-treated rats. In contrast, cyclin-B1 and cyclin-dependent kinase 1, mediators of G2 arrest, were remarkably changed in ALX-treated rats. Genes involved in the intrinsic mitochondria-mediated apoptotic pathway were upregulated in the ALX and STZ groups. Moreover, heat-shock 70 kDA protein 1A ( Hspa1a), Hsp90ab1, and Hsph1 were upregulated in ALX-treated rats, suggesting that ALX treatment injures β cells via endoplasmic reticulum stress. These results contribute to a better understanding of gene expression in the pathogenesis of islet toxicity.
Collapse
Affiliation(s)
- Yuki Kato
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan.,2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yusaku Masago
- 3 Discovery Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Chiaki Kondo
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Erika Yogo
- 3 Discovery Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Mikinori Torii
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuko Hishikawa
- 1 Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Izawa
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Mitsuru Kuwamura
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jyoji Yamate
- 2 Laboratory of Veterinary Pathology, Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
4
|
Abstract
Transcriptional activity is repressed due to the packaging of sperm chromatins during spermiogenesis. The detection of numerous transcripts in sperm, however, raises the question whether transcriptional events exist in sperm,
which has been the central focus of the recent studies. To summarize the transcriptional activity during spermiogenesis and in sperm, we reviewed the documents on transcript differences during spermiogenesis, in sperm with
differential motility, before and after capacitation and cryopreservation. This will lay a theoretical foundation for studying the mechanism(s) of gene expression in sperm, and would be invaluable in making better use of animal
sires and developing reproductive control technologies.
Collapse
Affiliation(s)
- Xiaoxia Ren
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Xiaoli Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Zhenling Wang
- Beijing Agricultural Vocation College, Beijing 102442, China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Adedara IA, Abolaji AO, Odion BE, Omoloja AA, Okwudi IJ, Farombi EO. Redox status of the testes and sperm of rats following exposure to 2,5-hexanedione. Redox Rep 2016; 21:239-47. [PMID: 26818104 DOI: 10.1080/13510002.2015.1107312] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES Exposure to 2,5-hexanedione (2,5-HD) is well known to be associated with reproductive dysfunctions in both humans and animals. However, the role of oxidative stress in 2,5-HD-induced toxicity in testes and sperm has not yet been studied. METHODOLOGY The present study investigated the influence of 2,5-HD on antioxidant systems in the testes and epididymal sperm of rats following exposure to 0, 0.25, 0.5, and 1% 2,5-HD in drinking water for 21 consecutive days. RESULTS Administration of 0.5% 2,5-HD significantly (P < 0.05) decreased epididymis weight, whereas 1% 2,5-HD-treated rats showed significantly decreased body weight, testis, and epididymis weights compared with the control group. Exposure to 2,5-HD caused a significant dose-dependent increase in the activities of superoxide dismutase, catalase, and glutathione peroxidase in both testes and sperm compared with the control group. Moreover, 2,5-HD-exposed rats showed significant decrease in glutathione-S-transferase activity and glutathione level with concomitant significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm. Testicular and epididymal atrophy with significant, dose-dependent, decrease in epididymal sperm number, sperm motility, and viability were observed in 2,5-HD-treated rats. CONCLUSION 2,5-HD exposure impaired testicular function and sperm characteristics by disruption of the antioxidant systems and consequently, increased oxidative stress in the treated rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - Amos O Abolaji
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - Blessing E Odion
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria.,b Department of Environmental Health Science , Jiann Ping Hsu College of Public Health, Georgia Southern University , Statesboro , GA 30460 , USA
| | - Abiola A Omoloja
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - Isioma J Okwudi
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - Ebenezer O Farombi
- a Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry , College of Medicine, University of Ibadan , Ibadan , Nigeria
| |
Collapse
|
6
|
Catlin NR, Huse SM, Boekelheide K. The stage-specific testicular germ cell apoptotic response to low-dose radiation and 2,5-hexanedione combined exposure. II: qRT-PCR array analysis reveals dose dependent adaptive alterations in the apoptotic pathway. Toxicol Pathol 2014; 42:1229-37. [PMID: 24670816 DOI: 10.1177/0192623314525689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Testicular effects of chemical mixtures may differ from those of the individual chemical constituents. This study assessed the co-exposure effects of the model germ cell- and Sertoli cell-specific toxicants, X-irradiation (x-ray), and 2,5-hexanedione (HD), respectively. In high-dose studies, HD has been shown to attenuate x-ray-induced germ cell apoptosis. Adult rats were exposed to different levels of x-ray (0.5 Gy, 1 Gy, and 2 Gy) or HD (0.33%), either alone or in combination. To assess cell type-specific attenuation of x-ray effects with HD co-exposure, we used laser capture microdissection (LCM) to enrich the targeted cell population and examine a panel of apoptosis-related transcripts using PCR arrays. The apoptosis PCR arrays identified significant dose-dependent treatment effects on several genes, with downregulation of death receptor 5 (DR5), Naip2, Sphk2, Casp7, Aven, Birc3, and upregulation of Fas. The greatest difference in transcript response to exposure was seen with 0.5 Gy x-ray exposure, and the attenuation effect seen with the combined high-dose x-ray and HD did not persist into the low-dose range. Examination of protein levels in staged tubules revealed a significant upregulation in DR5, following high-dose co-exposure. These results provide insight into the testis cell-specific apoptotic response to low-dose co-exposures of model testicular toxicants.
Collapse
Affiliation(s)
- Natasha R Catlin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Susan M Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|