1
|
Rae M, Gomes I, Spelta LEW, Bailey A, Marcourakis T, Devi L, Camarini R. Environmental enrichment enhances ethanol preference over social reward in male swiss mice: Involvement of oxytocin-dopamine interactions. Neuropharmacology 2024; 253:109971. [PMID: 38705568 PMCID: PMC11145911 DOI: 10.1016/j.neuropharm.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.
Collapse
Affiliation(s)
- Mariana Rae
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Lidia Emmanuela Wiazowski Spelta
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Lakshmi Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
2
|
Flores A, Moyano P, Sola E, García JM, García J, Frejo MT, Guerra-Menéndez L, Labajo E, Lobo I, Abascal L, Pino JD. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. BIOLOGY 2023; 12:782. [PMID: 37372067 DOI: 10.3390/biology12060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/β-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.
Collapse
Affiliation(s)
- Andrea Flores
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emma Sola
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jimena García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Fisiología, Facultad de Medicina, Universidad San Pablo CEU, 28003 Madrid, Spain
| | - Elena Labajo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inés Lobo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Estévez-Cabrera MM, Sánchez-Muñoz F, Pérez-Sánchez G, Pavón L, Hernández-Díazcouder A, Córtes Altamirano JL, Soria-Fregoso C, Alfaro-Rodríguez A, Bonilla-Jaime H. Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
Affiliation(s)
- M. Maetzi Estévez-Cabrera
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, UAM, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1. Col. Belisario Domínguez - Sección XVI, Tlalpan, Ciudad de México, C.P. 14080, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrian Hernández-Díazcouder
- Posgrado en Biologia Experimental, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, C.P. 09340, Ciudad de México, Mexico
| | - J. Luis Córtes Altamirano
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Estado de México, Mexico
| | - C. Soria-Fregoso
- Laboratorio de Ciencias Biomédicas/Área de Histología y Psicobiología, Departamento de Ciencias de la Tierra y de la Vida, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, 47460, Jalisco, Mexico
| | - Alfonso Alfaro-Rodríguez
- Departamento de Neurociencias Basicas, Instituto Nacional de Rehabilitación, “Luis Guillermo Ibarra”. Calzada México Xochimilco No. 289, Col. Arenal de Guadalupe, C.P.14389, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, UAM-I, Av. San Rafael Atlixco 186, Leyes de Reforma, 09340, Ciudad de México, Mexico
| |
Collapse
|
4
|
Alkan Ozdemir S, Ozdemir N, Aksan O, Kınalı B, Bilici Güler G, Erbil G, Ozer E, Ozer E. Effect of humic acid on oxidative stress and neuroprotection in hypoxic-ischemic brain injury: part 1. J Matern Fetal Neonatal Med 2022; 35:4580-4589. [PMID: 36062519 DOI: 10.1080/14767058.2020.1856809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Aimed to investigate in an animal model the efficacy of humic acid by showing its antioxidant and anti-apoptotic effect comparing with the histopathological and neurological outcomes for the hypoxic-ischemic brain injury. METHODS 28 Wistar-Albino rats who were on the 7th postnatal day and weighting between 9 and 19 g randomly divided into four groups with developed HIE model under the gas anesthesia. 20 mg/kg and 10 mg/kg intraperitoneal HA were given to Group I and II respectively. Saline was given to Group III and the sham group was Group IV. The brain tissues were stained with cresyl-violet histochemistry for grading neuronal cell injury and caspase immunohistochemistry. RESULTS The neuronal cell injury was statistically lower in all neuroanatomical lands in HA treatment groups. The degree of ischemia was significantly smaller in HA groups. Caspase-3 immunoreactivity was decreased in the HA groups compared with the saline group. When the groups were compared, there were no serious neuronal injury in Group I. CONCLUSIONS This is the first study which investigates the role of HA in HIE model. HA reduces apoptosis and neuronal injury in cerebral tissue of the rats. This findings suggest that HA may be viable protective agent against HIE.
Collapse
Affiliation(s)
- Senem Alkan Ozdemir
- Izmir Health Science University Division of Neonatology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey
| | | | | | | | | | - Güven Erbil
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Erdener Ozer
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Esra Ozer
- School of Medicine, Izmir Tınaztepe University, Izmir, Turkey
| |
Collapse
|
5
|
[Curcumin alleviates the manganese-induced neurotoxicity by promoting autophagy in rat models of manganism]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54. [PMID: 35701115 PMCID: PMC9197692 DOI: 10.19723/j.issn.1671-167x.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the protective effects of curcumin(CUR) and its mechanism on a rat model of neurotoxicity induced by manganese chloride (MnCl2), which mimics mangnism. METHODS Sixty male SD rats were randomly divided into 5 groups, with 12 rats in each group. Control group received 0.9% saline solution intraperitoneally (ip) plus double distilled water (dd) H2O intragastrically (ig), MnCl2 group received 15 mg/kg MnCl2(Mn2+ 6.48 mg/kg) intraperitoneally plus dd H2O intragastrically, CUR group received 0.9% saline solution intraperitoneally plus 300 mg/kg CUR intragastrically, MnCl2+ CUR1 group received 15 mg/kg MnCl2 intraperitoneally plus 100 mg/kg curcumin intragastrically, MnCl2+ CUR2 group received 15 mg/kg MnCl2 intraperitoneally plus 300 mg/kg CUR intragastrically, 5 days/week, 4 weeks. Open-field and rotarod tests were used to detect animals' exploratory behavior, anxiety, depression, movement and balance ability. Morris water maze (MWM) experiment was used to detect animals' learning and memory ability. ICP-MS was used to investigate the Mn contents in striata. The rats per group were perfused in situ, their brains striata were removed by brains model and fixed for transmission electron microscope (TEM), histopathological and immunohistochemistry (ICH) analyses. The other 6 rats per group were sacrificed. Their brains striata were removed and protein expression levels of transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), p-mTOR, Beclin, P62, microtubule-associated protein light chain-3 (LC3) were detected by Western blotting. Terminal deoxynucleotidyl transterase-mediated dUTP nick end labeling (TUNEL) staining was used to determine neurocyte apoptosis of rat striatum. RESULTS After exposure to MnCl2 for four weeks, MnCl2-treated rats showed depressive-like behavior in open-field test, the impairments of movement coordination and balance in rotarod test and the diminishment of spatial learning and memory in MWM (P < 0.05). The striatal TH+ neurocyte significantly decreased, eosinophilic cells, aggregative α-Syn level and TUNEL-positive neurocyte significantly increased in the striatum of MnCl2 group compared with control group (P < 0.05). Chromatin condensation, mitochondria tumefaction and autophagosomes were observed in rat striatal neurocytes of MnCl2 group by TEM. TFEB nuclear translocation and autophagy occurred in the striatum of MnCl2 group. Further, the depressive behavior, movement and balance ability, spatial learning and memory ability of MnCl2+ CUR2 group were significantly improved compared with MnCl2 group (P < 0.05). TH+ neurocyte significantly increased, the eosinophilic cells, aggregative α-Syn level significantly decreased in the striatum of MnCl2+ CUR2 group compared with MnCl2 group. Further, compared with MnCl2 group, chromatin condensation, mitochondria tumefaction was alleviated and autophagosomes increased, TFEB-nuclear translocation, autophagy was enhanced and TUNEL-positive neurocyte reduced significantly in the striatum of MnCl2+ CUR2 group (P < 0.05). CONCLUSION Curcumin alleviated the MnCl2-induced neurotoxicity and α-Syn aggregation probably by promoting TFEB nuclear translocation and enhancing autophagy.
Collapse
|
6
|
Taheri F, Sattari E, Hormozi M, Ahmadvand H, Bigdeli MR, Kordestani-Moghadam P, Anbari K, Milanizadeh S, Moghaddasi M. Dose-Dependent Effects of Astaxanthin on Ischemia/Reperfusion Induced Brain Injury in MCAO Model Rat. Neurochem Res 2022; 47:1736-1750. [DOI: 10.1007/s11064-022-03565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
7
|
Muthu SJ, Lakshmanan G, Seppan P. Influence of Testosterone depletion on Neurotrophin-4 in Hippocampal synaptic plasticity and its effects on learning and memory. Dev Neurosci 2022; 44:102-112. [PMID: 35086088 DOI: 10.1159/000522201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sex steroids are neuromodulators that play a crucial role in learning, memory, and synaptic plasticity, providing circuit flexibility and dynamic functional connectivity in mammals. Previous studies indicate that testosterone is crucial for neuronal functions and required further investigation on various frontiers. However, it is surprising to note that studies on testosterone-induced NT-4 expression and its influence on synaptic plasticity and learning and memory moderation are scanty. The present study is focused on analyzing the localized influence of neurotrophin-4 (NT4) on hippocampal synaptic plasticity and associated moderation in learning and memory under testosterone deprivation. Adult Wistar albino rats were randomly divided into various groups, control (Cont), orchidectomy (ORX), orchidectomy + testosterone supplementation (ORX+T) and control + testosterone (Cont+T). After two weeks, the serum testosterone level was undetectable in ORX rats. The behavioural assessment showed a decline in the learning ability of ORX rats with increased working and reference memory errors in the behavioural assessment in the 8-arm radial maze. The mRNA and protein expressions of NT-4 and androgen receptors were significantly reduced in the ORX group. In addition, there was a decrease in the number of neuronal dendrites in Golgi-Cox staining. These changes were not seen in ORX+T rats with improved learning behaviour. Indicating that testosterone exerts its protective effect on hippocampal synaptic plasticity through androgen receptor-dependent neurotrophin-4 regulation in learning and memory upgrade.
Collapse
Affiliation(s)
- Sakthi Jothi Muthu
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Prakash Seppan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
8
|
Pardo ID, Rao DB, Morrison JP, Huddleston C, Bradley AE, Bolon B, Garman RH. Nervous System Sampling for General Toxicity and Neurotoxicity Studies in Rabbits. Toxicol Pathol 2020; 48:810-826. [PMID: 33094688 DOI: 10.1177/0192623320957637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although manuscripts for multiple species recommending nervous system sampling for histopathology evaluation in safety assessment have been published in the past 15 years, none have addressed the laboratory rabbit. Here, we describe 2 trimming schemes for evaluating the rabbit brain in nonclinical toxicity studies. In both schemes, the intact brain is cut in the coronal plane to permit bilateral assessment. The first scheme is recommended for general toxicity studies (tier 1) in screening agents where there is no anticipated neurotoxic potential; this 6-section approach is consistent with the Society of Toxicologic Pathology (STP) "best practice" recommendations for brain sampling in nonrodents (Toxicol Pathol 41: 1028-1048, 20131). The second trimming scheme is intended for dedicated neurotoxicity studies (tier 2) to characterize known or suspected neurotoxicants where the nervous system is a key target organ. This tier 2 strategy relies on coronal trimming of the whole brain into 3-mm-thick slices and then evaluating 12 sections. Collection of spinal cord, ganglia, and nerve specimens for rabbits during nonclinical studies should follow published STP "best practice" recommendations for sampling the central nervous system1 and peripheral nervous system (Toxicol Pathol 46: 372-402, 20182).
Collapse
Affiliation(s)
- Ingrid D Pardo
- 390190Pfizer, Inc, Global Pathology and Investigative Toxicology, Groton, CT, USA
| | - Deepa B Rao
- ToxPath Specialists, LLC (a StageBio Company), Frederick, MD, USA
| | | | - Colleen Huddleston
- 390190Pfizer, Inc, Global Pathology and Investigative Toxicology, Groton, CT, USA
| | - Alys E Bradley
- 57146Charles River Laboratories Edinburgh Ltd, Tranent, East Lothian, Scotland, United Kingdom
| | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc, Murrysville, Pennsylvania, PA, USA
| |
Collapse
|
9
|
Venkat P, Culmone L, Chopp M, Landschoot-Ward J, Wang F, Zacharek A, Chen J. HUCBC Treatment Improves Cognitive Outcome in Rats With Vascular Dementia. Front Aging Neurosci 2020; 12:258. [PMID: 32973489 PMCID: PMC7461871 DOI: 10.3389/fnagi.2020.00258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background and purpose: Vascular dementia (VaD) is the second common cause of dementia after Alzheimer's disease in older people. Yet, there are no FDA approved drugs specifically for VaD. In this study, we have investigated the therapeutic effects of human umbilical cord blood cells (HUCBC) treatment on the cognitive outcome, white matter (WM) integrity, and glymphatic system function in rats subject to a multiple microinfarction (MMI) model of VaD. Methods: Male, retired breeder rats were subjected to the MMI model (800 ± 100 cholesterol crystals/300 μl injected into the internal carotid artery), and 3 days later were treated with phosphate-buffered saline (PBS) or HUCBC (5 × 106, i.v.). Sham rats were included as naïve control. Following a battery of cognitive tests, rats were sacrificed at 28 days after MMI and brains extracted for immunohistochemical evaluation and Western blot analysis. To evaluate the glymphatic function, fluorescent tracers (Texas Red dextran, MW: 3 kD and FITC-dextran, MW: 500 kD) was injected into the cisterna magna over 30 min at 14 days after MMI. Rats (3-4/group/time point) were sacrificed at 30 min, 3 h, and 6 h, and the tracer movement analyzed using laser scanning confocal microscopy. Results: Compared to control MMI rats, HUCBC treated MMI rats exhibit significantly improved short-term memory and long-term memory exhibited by increased discrimination index in novel object recognition task with retention delay of 4 h and improved novel odor recognition task with retention delay of 24 h, respectively. HUCBC treatment also improves spatial learning and memory as measured using the Morris water maze test compared to control MMI rats. HUCBC treatment significantly increases axon and myelin density increases oligodendrocyte and oligodendrocyte progenitor cell number and increases Synaptophysin expression in the brain compared to control MMI rats. HUCBC treatment of MMI in rats significantly improves glymphatic function by reversing MMI induced delay in the penetration of cerebrospinal fluid (CSF) into the brain parenchyma via glymphatic pathways and reversing delayed clearance from the brain. HUCBC treatment significantly increases miR-126 expression in serum, aquaporin-4 (AQP4) expression around cerebral vessels, and decreases transforming growth factor-β (TGF-β) protein expression in the brain which may contribute to HUCBC induced improved glymphatic function. Conclusions: HUCBC treatment of an MMI rat model of VaD promotes WM remodeling and improves glymphatic function which together may aid in the improvement of cognitive function and memory. Thus, HUCBC treatment warrants further investigation as a potential therapy for VaD.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | | | - Fengjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
10
|
Neonatal treatment with clomipramine modifies the expression of estrogen receptors in brain areas of male adult rats. Brain Res 2019; 1724:146443. [DOI: 10.1016/j.brainres.2019.146443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
|
11
|
Huang CC, Chen YY, Fang YT, Chen YC, Hung CM. Generating brain matrices for zebra finch brain sectioning using three-dimensional printing technology. J Neurosci Methods 2019; 327:108399. [PMID: 31425722 DOI: 10.1016/j.jneumeth.2019.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The demand to sample brain regions in non-model species is increasing as more studies are integrating neurological data into behavioural, ecological or evolutionary analysis. However, the sampling operation is difficult for researchers without neuroscience background. It is also a challenge to collect neuroanatomical regions from animals in the field. NEW METHOD Here we developed a new brain matrix for guiding researchers to section zebra finches' (Taeniopygia guttata) brains more steadily than by freehand trimming. Based on the 3D printing technology, we produced the zebra finch brain matrix from scratch. We also provided a step-by-step protocol to make brain matrices for any species with a brain size between that of shrews and dogs. RESULTS The brain matrix could guide us to find the zebra finch's neuroanatomical landmarks, such as the hypothalamus, optic chiasm and occulomotor nerve. The matrix's channels near these landmarks could be used to section brains steadily and rapidly. COMPARISON WITH EXISTING METHODS Standardized brain sectioning often requires expensive machines that may not be available in most laboratories or in the field, such as microtomes. In addition, machine-based trimming is time-consuming. Although commercial brain matrices can overcome these problems, they are only available for rats and mice. The brain matrices we developed are affordable to most laboratories and can be customised for non-model species in both lab and field experiments. CONCLUSIONS The matrix-guided approach requires a relatively short training period and can allow researchers to properly and quickly sample brains, and thus will facilitate neuroscience-based interdisciplinary research.
Collapse
Affiliation(s)
| | - Yi-Ying Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Molina-Martínez LM, Juárez J. Differential expression of μ-opioid receptors in the nucleus accumbens, amygdala and VTA depends on liking for alcohol, chronic alcohol intake and estradiol treatment. Behav Brain Res 2019; 378:112255. [PMID: 31550484 DOI: 10.1016/j.bbr.2019.112255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Affectations of the opioid system have been related to exacerbated alcohol consumption. The objectives of this work were to assess whether a deficit of β-endorphinergic neurons differentially affects alcohol intake in female rats with low (LC) and high alcohol consumption (HC), and to determine changes in the μ-opioid receptors (MOR) related to alcohol consumption and chronic exposure to alcohol in structures of the mesolimbic system. Female wild-type rats were selected according to their baseline alcohol intake levels and then exposed to chronic voluntary alcohol consumption after a single injection of either the vehicle or estradiol valerate (EV) to produce a β-endorphin neuronal deficit. Changes in alcohol consumption and MOR expression levels were assessed in the nucleus accumbens (NAc), amygdala (Amy) and ventral tegmental area (VTA) at 5 and 10 weeks after EV treatment. The LC rats increased alcohol intake from baseline to the initial weeks after EV treatment and this consumption remained stable throughout the studied period. In contrast, alcohol consumption increased steadily over time in the HC rats. The HC vehicle rats had a 38% higher MOR protein expression in the NAc than the LC vehicle rats. In addition, chronic alcohol consumption increased MOR expression in the Amy regardless of consumption level, whereas EV treatment produced a decrease in MOR expression in the VTA in all groups. These results suggest intrinsic differences in MOR expression related to alcohol consumption levels. Also, the EV treatment and chronic exposure to alcohol produced adaptive changes in MOR expression.
Collapse
Affiliation(s)
- L M Molina-Martínez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Mexico
| | - J Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Mexico.
| |
Collapse
|
13
|
Destruction of the Dorsal Motor Nucleus of the Vagus Aggravates Inflammation and Injury from Acid-Induced Acute Esophagitis in a Rat Model. Anal Cell Pathol (Amst) 2019; 2019:8243813. [PMID: 31281769 PMCID: PMC6589286 DOI: 10.1155/2019/8243813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background/Aims The aim of this study is to examine the protective effect of the cholinergic anti-inflammatory pathway (CAP) in experimental esophagitis in rats. Methods A total of 40 male Sprague-Dawley (SD) rats were randomly divided into five groups as follows: control group, sham + saline group, sham + acid group, operation + saline group, and operation + acid group. Two weeks after the dorsal motor nucleus of the vagus (DMV) destruction, hydrochloric acid with pepsin was perfused into the lower part of the esophagus for 90 min. The rats were sacrificed 60 min after perfusion. The esophagus was prepared for hematoxylin and eosin (HE) staining, and the degree of inflammation and NF-κB activation in the esophagus was measured. Inflammatory cytokines (TNF-α, IL-6, IL-1β, and PGE2) in the esophagus were measured by ELISA. The brain was removed and processed for c-fos immunohistochemistry staining. The c-fos-positive neurons were counted and analyzed. Results The TNF-α, IL-1β, IL-6, and PGE2 concentrations in the esophageal tissue increased after acid perfusion. The microscopic esophagitis scores and the activation of NF-κB p65 in the esophagus were significantly higher in the operation + acid group than in the operation + saline group. c-fos-positive neurons significantly increased in rats receiving acid perfusion in the amygdala (AM), the paraventricular nucleus of the hypothalamus (PVN), the parabrachial nucleus (PBN), the nucleus of the solitary tract (NTS)/DMV, the nucleus ambiguous (NA), the reticular nucleus of the medulla (RNM), and the area postrema (AP). After DMV destruction, c-fos expression was reduced in the AM, PVN, PBN, NTS/DMV, NA, RNM, and AP, especially in the AM, PVN, NTS/DMV, RNM, and AP. Conclusions The DMV is an important nucleus of the CAP. The DMV lesion can aggravate esophageal inflammation and injury from acid-induced acute esophagitis in a rat model. The CAP has a protective effect on the acute esophagitis rat model and could be a new therapy for reflux esophagitis (RE).
Collapse
|
14
|
Zhang J, Han Y, Zhao Y, Li Q, Jin H, Qin J. Inhibition of TRIB3 Protects Against Neurotoxic Injury Induced by Kainic Acid in Rats. Front Pharmacol 2019; 10:585. [PMID: 31191318 PMCID: PMC6538922 DOI: 10.3389/fphar.2019.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy refers to a group of neurological disorders of varying etiologies characterized by recurrent seizures, resulting in brain dysfunction. Endoplasmic reticulum (ER) stress is highly activated in the process of epilepsy-related brain injury. However, the mechanisms by which ER stress triggers neuronal apoptosis remain to be fully elucidated. Tribbles pseudokinase 3 (TRIB3) is a pseudokinase that affects a number of cellular functions, and its expression is increased during ER stress. Here, we sought to clarify the role of TRIB3 in neuronal apoptosis mediated by ER stress. In the kainic acid (KA) (10 mg/kg)-induced rat seizure model, we characterized neuronal injury and apoptosis after KA injection. KA induced an ER stress response, as indicated by elevated expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). TRIB3 protein was upregulated concomitantly with the downregulation of phosphorylated-protein kinase B (p-AKT) in rats following KA administration. In rat cortical neurons treated with KA, TRIB3 knockdown by siRNA reduced the number of dying neurons, decreased the induction of GRP78 and CHOP and the activation of caspase-3, and blocked the dephosphorylation of AKT after KA treatment. Our findings indicate that TRIB3 is involved in neuronal apoptosis occurring after KA-induced seizure. The knockdown of TRIB3 effectively protects against neuronal apoptosis in vitro, suggesting that TRIB3 may be a potential therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinrui Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
15
|
Moon-Massat P, Mullah SHER, Abutarboush R, Saha BK, Pappas G, Haque A, Auker C, McCarron RM, Arnaud F, Scultetus A. Cerebral Vasoactivity and Oxygenation with Oxygen Carrier M101 in Rats. J Neurotrauma 2017; 34:2812-2822. [PMID: 26161914 DOI: 10.1089/neu.2015.3908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The severity of traumatic brain injury (TBI) may be reduced if oxygen can be rapidly provided to the injured brain. This study evaluated if the oxygen-carrier M101 causes vasoconstricton of pial vasculature in healthy rats (Experiment 1) and if M101 improves brain tissue oxygen (PbtO2) in rats with controlled cortical impact (CCI)-TBI (Experiment 2). M101 (12.5 mL/kg intravenous [IV] over 2 h) caused a mild (9 mm Hg) increase in the mean arterial blood pressure (MAP) of healthy rats without constriction of cerebral pial arterioles. M101 (12 mL/kg IV over 1 h) caused a modest (27 mm Hg) increase in MAP (peak, 123 ± 5 mm Hg [mean ± standard error of the mean]) of CCI-TBI rats and restored PbtO2 to near pre-injury levels. In both M101 and untreated control (NON) groups, PbtO2 was ∼30 ± 2 mm Hg pre-injury and decreased (p ≤ 0.05) to ∼16 ± 2 mm Hg 15 min after CCI. In NON, PbtO2 remained ∼50% of baseline but M101 administration resulted in a sustained increase in PbtO2 (peak, 25 ± 5 mm Hg), which was not significantly different from pre-injury until the end of the study, when it decreased again below pre-injury (but was still higher than NON). Histopathology showed no differences between groups. In conclusion, M101 increased systemic blood pressures without concurrent cerebral pial vasoconstriction (in healthy rats) and restored PbtO2 to 86% of pre-injury for at least 80 min when given soon after CCI-TBI. M101 should be evaluated in a clinically-relevant large animal model for pre-hospital treatment of TBI.
Collapse
Affiliation(s)
- Paula Moon-Massat
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Saad Habib-E-Rasul Mullah
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Rania Abutarboush
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Biswajit K Saha
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Georgina Pappas
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Ashraful Haque
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Charles Auker
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland
| | - Richard M McCarron
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland.,2 Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Francoise Arnaud
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland.,2 Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Anke Scultetus
- 1 Department of Neurotrauma, Naval Medical Research Center , Operational and Undersea Medicine Directorate, Silver Spring, Maryland.,2 Department of Surgery, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
16
|
Mullah SH, Abutarboush R, Moon-Massat PF, Saha BK, Haque A, Walker PB, Auker CR, Arnaud FG, McCarron RM, Scultetus AH. Sanguinate's effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact. Microvasc Res 2016; 107:83-90. [PMID: 27287870 DOI: 10.1016/j.mvr.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Sanguinate, a polyethylene glycol-conjugated carboxyhemoglobin, was investigated for cerebral vasoactivity in healthy male Sprague-Dawley rats (Study 1) and for its ability to increase brain tissue oxygen pressure (PbtO2) after controlled cortical impact (CCI) - traumatic brain injury (TBI) (Study 2). In both studies ketamine-acepromazine anesthetized rats were ventilated with 40% O2. In Study 1, a cranial window was used to measure the diameters of medium - (50-100μm) and small-sized (<50μm) pial arterioles before and after four serial infusions of Sanguinate (8mL/kg/h, cumulative 16mL/kg IV), volume-matched Hextend, or normal saline. In Study 2, PbtO2 was measured using a phosphorescence quenching method before TBI, 15min after TBI (T15) and then every 10min thereafter for 155min. At T15, rats received either 8mL/kg IV Sanguinate (40mL/kg/h) or no treatment (saline, 4mL/kg/h). Results showed: 1) in healthy rats, percentage changes in pial arteriole diameter were the same among the groups, 2) in TBI rats, PbtO2 decreased from 36.5±3.9mmHg to 19.8±3.0mmHg at T15 in both groups after TBI and did not recover in either group for the rest of the study, and 3) MAP increased 16±4mmHg and 36±5mmHg after Sanguinate in healthy and TBI rats, respectively, while MAP was unchanged in control groups. In conclusion, Sanguinate did not cause vasoconstriction in the cerebral pial arterioles of healthy rats but it also did not acutely increase PbtO2 when administered after TBI. Sanguinate was associated with an increase in MAP in both studies.
Collapse
Affiliation(s)
- Saad H Mullah
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Rania Abutarboush
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Paula F Moon-Massat
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Biswajit K Saha
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Ashraful Haque
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Peter B Walker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Charles R Auker
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA.
| | - Francoise G Arnaud
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Richard M McCarron
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| | - Anke H Scultetus
- Naval Medical Research Center, NeuroTrauma Department, 503 Robert Grant Avenue Silver Spring, MD 20910, USA; Uniformed Services University of the Health Sciences, Department of Surgery, Bethesda, MD 20814, USA.
| |
Collapse
|