1
|
Bhusare N, Gade A, Kumar MS. Using nanotechnology to progress the utilization of marine natural products in combating multidrug resistance in cancer: A prospective strategy. J Biochem Mol Toxicol 2024; 38:e23732. [PMID: 38769657 DOI: 10.1002/jbt.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.
Collapse
Affiliation(s)
- Nilam Bhusare
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidyavihar (E), Mumbai, India
| |
Collapse
|
2
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1282-1295. [DOI: 10.1093/jpp/rgac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022]
|
3
|
Andraos C, Gulumian M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1680. [PMID: 33111484 PMCID: PMC7988657 DOI: 10.1002/wnan.1680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Cancer nanomedicine has evolved in recent years and is only expected to increase due to the ease with which nanomaterials (NMs) may be manipulated to the advantage of the cancer patient. The success of nanomedicine is dependent on the cell death mechanism, which in turn is dependent on the organelle initially targeted. The success of cancer nanomedicine is also dependent on other cellular mechanisms such as the induction of autophagy dysfunction, manipulation of the tumor microenvironment (TME) and secretome or induction of host immune responses. Current cancer phototherapies for example, photothermal- or photodynamic therapies as well as radio enhancement also form a major part of cancer nanomedicine. In general, cancer nanomedicine may be grouped into those NMs exhibiting inherent anti-cancer properties that is, self-therapeutic NMs (Group 1), NMs leading to localization of phototherapies or radio-enhancement (Group 2), and NMs as nanocarriers in the absence or presence of external radiation (Group 3). The recent advances of these three groups, together with their advantages and disadvantages as well as their cellular mechanisms and ultimate outcomes are summarized in this review. By exploiting these different intracellular mechanisms involved in initiating cell death pathways, it is possible to synthesize NMs that may have the desirable characteristics to maximize their efficacy in cancer therapy. Therefore, a summary of these important physicochemical characteristics is also presented that need to be considered for optimal cancer cell targeting and initiation of mechanisms that will lead to cancerous cell death. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Charlene Andraos
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
| | - Mary Gulumian
- Toxicology DepartmentNational Institute for Occupational HealthJohannesburgSouth Africa
- Haematology and Molecular Medicine DepartmentUniversity of the WitwatersrandJohannesburgSouth Africa
- Water Research Group, Unit for Environmental Sciences and ManagementNorth West UniversityPotchefstroomSouth Africa
| |
Collapse
|
4
|
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2186. [PMID: 33147800 PMCID: PMC7692849 DOI: 10.3390/nano10112186] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis, treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield individualized therapy. However, due to their unique properties brought about by their small size, safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation time, access and bioavailability to disease sites, and their safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Saisree Ravi
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Joy D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.A.D.); (J.D.P.); (D.E.H.)
- UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Chen Y, Yang T, Chen S, Qi S, Zhang Z, Xu Y. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J Biochem Mol Toxicol 2020; 34:e22474. [PMID: 32043710 DOI: 10.1002/jbt.22474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 12/27/2022]
Abstract
With the rapid development of nanotechnology, nanomaterials are now being used for cancer treatment. Although studies on the application of silver nanoparticles in cancer treatment are burgeoning, few studies have investigated the toxicology mechanisms of autophagy in cancer cells under exposure to sublethal silver nanoparticles. Here, we clarified the distinct mechanisms of silver nanoparticles for the regulation of autophagy in prostate cancer PC-3 cells under sublethal exposure. Silver nanoparticle treatment caused lysosome injury, including the decline of lysosomal membrane integrity, decrease of lysosomal quantity, and attenuation of lysosomal protease activity, which resulted in blockage of autophagic flux. In addition, sublethal silver nanoparticle exposure activated AMP-activated protein kinase/mammalian target of rapamycin-dependent signaling pathway to modulate autophagy, which resulted from silver nanoparticles-induced cell hypoxia and energy deficiency. Taken together, the results show that silver nanoparticles could regulate autophagy via lysosome injury and cell hypoxia in PC-3 cells under sublethal dose exposure. This study will provide an experimental basis for the cancer therapy of nanomaterials.
Collapse
Affiliation(s)
- Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Tong Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Shiqun Chen
- Department of Biological Pharmaceutical, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
6
|
Chen Y, Wang M, Zhang T, Du E, Liu Y, Qi S, Xu Y, Zhang Z. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:71-77. [PMID: 30248563 DOI: 10.1016/j.ecoenv.2018.09.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
With the advancement of nanotechnology and unique properties, silver nanoparticles (AgNPs) have been generally used in our work and life. However, the concerns on nanosafety have not been thoroughly understood. Although mounting studies have documented AgNPs-mediated autophagy under toxic dose, very few studies have been made to reveal the mechanisms of AgNPs-induced autophagy at non-toxic concentrations. Here, we investigated AgNPs-mediated biological effects on autophagy in renal cells under sublethal exposure. Sublethal AgNPs resulted in increase of LC3II level and accumulation of autophagy related genes in HEK293T and A498 cells, which demonstrated AgNPs could activate autophagy at lower concentrations. Mechanistic investigation manifested that AMPK-mTOR signaling was enrolled in AgNPs-induced autophagy process rather than PI3K/AKT/mTOR signaling. In addition, P62 was elevated in AgNPs-treated cells in an mTOR-independent manner. We further uncovered that sublethal AgNPs exposure impaired the integrity and protease activities of lysosome. Together, our results revealed the mechanism by which AgNPs induced autophagy in renal cells under sublethal concentration.
Collapse
Affiliation(s)
- Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Meng Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tianke Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|
7
|
Pinto SR, Helal-Neto E, Paumgartten F, Felzenswalb I, Araujo-Lima CF, Martínez-Máñez R, Santos-Oliveira R. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:527-538. [PMID: 29688037 DOI: 10.1080/21691401.2018.1460603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Whether in the cosmetic or as therapeutic, the use of nanoparticles has been increasing and taking on global proportion. However, there are few studies about the physical potential of long-term use or use in special conditions such as chronic, AIDS, pregnant women and other special health circumstances. In this context, the study of the mutagenicity and the transplacental passage represents an important and reliable model for the primary evaluation of potential health risks, especially maternal and child health. In this study we performed mutagenicity, cytotoxic and transplacental evaluation of magnetic core mesoporous silica nanoparticles, radiolabeled with 99mTc for determination of toxicogenic and embryonic/fetuses potential risk in animal model. Magnetic core mesoporous silica nanoparticles were produced and characterized by obtaining nanoparticles with a size of (58.9 ± 8.1 nm) in spherical shape and with intact magnetic core. The 99 m Tc radiolabeling process demonstrated high efficacy and stability in 98% yield over a period of 8 hours of stability. Mutagenicity assays were performed using Salmonella enteric serovar Typhimurium standard strains TA98, TA100 and TA102. Cytotoxicity assays were performed using WST-1. The transplacental evaluation assays were performed using the in vivo model with rats in two periods: embryonic and fetal stage. The results of both analyzes corroborate that the nanoparticles can i) generate DNA damage; ii) generate cytotoxic potential and iii) cross the transplantation barrier in both stages and bioaccumulates in both embryos and fetuses. The results suggest that complementary evaluations should be conducted in order to attest safety, efficacy and quality of nanoparticles before unrestricted approval of their use.
Collapse
Affiliation(s)
- Suyene Rocha Pinto
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil
| | - Edward Helal-Neto
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil
| | - Francisco Paumgartten
- b National School of Public Health , Oswaldo Cruz Foundation (FIOCRUZ) , Rio de Janeiro , Brazil
| | - Israel Felzenswalb
- c Departament of Biophysics and Biometrics, Environmental Mutagenesis Laboratory , Rio de Janeiro State University, Institute of Biology Roberto de Alcântara Gomes , Rio de Janeiro , Brazil
| | - Carlos Fernando Araujo-Lima
- c Departament of Biophysics and Biometrics, Environmental Mutagenesis Laboratory , Rio de Janeiro State University, Institute of Biology Roberto de Alcântara Gomes , Rio de Janeiro , Brazil
| | - Ramón Martínez-Máñez
- d Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) , Universitat Politècnica de València, Universitat de València , Valencia , Spain.,e Departamento de Química , Universidad Politécnica de Valencia , Valencia , Spain.,f CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , Valencia , Spain
| | - Ralph Santos-Oliveira
- a Nuclear Engineering Institute , Brazilian Nuclear Energy Commission , Rio de Janeiro , Brazil.,g Laboratory of Nanoradiopharmaceuticals and Radiopharmacy , Zona Oeste State University , Rio de Janeiro , Brazil
| |
Collapse
|