1
|
Loureiro M, Elias A, Machado F, Bezerra M, Zimerer C, Mello R, Frizera A. Analysis of Gait Kinematics in Smart Walker-Assisted Locomotion in Immersive Virtual Reality Scenario. SENSORS (BASEL, SWITZERLAND) 2024; 24:5534. [PMID: 39275445 PMCID: PMC11398063 DOI: 10.3390/s24175534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
The decline in neuromusculoskeletal capabilities of older adults can affect motor control, independence, and locomotion. Because the elderly population is increasing worldwide, assisting independent mobility and improving rehabilitation therapies has become a priority. The combination of rehabilitation robotic devices and virtual reality (VR) tools can be used in gait training to improve clinical outcomes, motivation, and treatment adherence. Nevertheless, VR tools may be associated with cybersickness and changes in gait kinematics. This paper analyzes the gait parameters of fourteen elderly participants across three experimental tasks: free walking (FW), smart walker-assisted gait (AW), and smart walker-assisted gait combined with VR assistance (VRAW). The kinematic parameters of both lower limbs were captured by a 3D wearable motion capture system. This research aims at assessing the kinematic adaptations when using a smart walker and how the integration between this robotic device and the VR tool can influence such adaptations. Additionally, cybersickness symptoms were investigated using a questionnaire for virtual rehabilitation systems after the VRAW task. The experimental data indicate significant differences between FW and both AW and VRAW. Specifically, there was an overall reduction in sagittal motion of 16%, 25%, and 38% in the hip, knee, and ankle, respectively, for both AW and VRAW compared to FW. However, no significant differences between the AW and VRAW kinematic parameters and no adverse symptoms related to VR were identified. These results indicate that VR technology can be used in walker-assisted gait rehabilitation without compromising kinematic performance and presenting potential benefits related to motivation and treatment adherence.
Collapse
Affiliation(s)
- Matheus Loureiro
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Arlindo Elias
- Graduate Program in Physiotherapy, Estacio de Sa University, Vitória 29092-095, ES, Brazil
| | - Fabiana Machado
- Graduate Program in Informatics, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Marcio Bezerra
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Carla Zimerer
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Ricardo Mello
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Anselmo Frizera
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Graduate Program in Informatics, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| |
Collapse
|
2
|
Lombardi G, Baccini M, Gualerzi A, Pancani S, Campagnini S, Doronzio S, Longo D, Maselli A, Cherubini G, Piazzini M, Ciapetti T, Polito C, Pinna S, De Santis C, Bedoni M, Macchi C, Ramat S, Cecchi F. Comparing the effects of augmented virtual reality treadmill training versus conventional treadmill training in patients with stage II-III Parkinson's disease: the VIRTREAD-PD randomized controlled trial protocol. Front Neurol 2024; 15:1338609. [PMID: 38327625 PMCID: PMC10847255 DOI: 10.3389/fneur.2024.1338609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Background Intensive treadmill training (TT) has been documented to improve gait parameters and functional independence in Parkinson's Disease (PD), but the optimal intervention protocol and the criteria for tailoring the intervention to patients' performances are lacking. TT may be integrated with augmented virtual reality (AVR), however, evidence of the effectiveness of this combined treatment is still limited. Moreover, prognostic biomarkers of rehabilitation, potentially useful to customize the treatment, are currently missing. The primary aim of this study is to compare the effects on gait performances of TT + AVR versus TT alone in II-III stage PD patients with gait disturbance. Secondary aims are to assess the effects on balance, gait parameters and other motor and non-motor symptoms, and patient's satisfaction and adherence to the treatment. As an exploratory aim, the study attempts to identify biomarkers of neuroplasticity detecting changes in Neurofilament Light Chain concentration T0-T1 and to identify prognostic biomarkers associated to blood-derived Extracellular Vesicles. Methods Single-center, randomized controlled single-blind trial comparing TT + AVR vs. TT in II-III stage PD patients with gait disturbances. Assessment will be performed at baseline (T0), end of training (T1), 3 (T2) and 6 months (T3, phone interview) from T1. The primary outcome is difference in gait performance assessed with the Tinetti Performance-Oriented Mobility Assessment gait scale at T1. Secondary outcomes are differences in gait performance at T2, in balance and spatial-temporal gait parameters at T1 and T2, patients' satisfaction and adherence. Changes in falls, functional mobility, functional autonomy, cognition, mood, and quality of life will be also assessed at different timepoints. The G*Power software was used to estimate a sample size of 20 subjects per group (power 0.95, α < 0.05), raised to 24 per group to compensate for potential drop-outs. Both interventions will be customized and progressive, based on the participant's performance, according to a predefined protocol. Conclusion This study will provide data on the possible superiority of AVR-associated TT over conventional TT in improving gait and other motor and non-motor symptoms in persons with PD and gait disturbances. Results of the exploratory analysis could add information in the field of biomarker research in PD rehabilitation.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Marco Baccini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Silvia Pancani
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | | | - Stefano Doronzio
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Diego Longo
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Maselli
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Technical-Health Professions, Rehabilitation, and Prevention, Campostaggia Hospital, Poggibonsi (SI), USL Toscana Sudest, Italy
| | - Giulio Cherubini
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | | | - Samuele Pinna
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara De Santis
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Ramat
- Parkinson Unit, Department of NeuroMuscular-Skeletal and Sensorial Organs, AOU Careggi, Florence, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|