1
|
Hazekamp C, Schmitz Z, Scoccimarro A. Methylene Blue-Induced Serotonin Toxicity: Case Files of the Medical Toxicology Fellowship at the New York City Poison Control Center. J Med Toxicol 2024; 20:54-58. [PMID: 37828274 PMCID: PMC10774363 DOI: 10.1007/s13181-023-00972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Affiliation(s)
- Corey Hazekamp
- Department of Emergency Medicine, NYC H+H/Lincoln, 234 E. 149thStreet Bronx, New York, NY, 10451, USA.
| | - Zach Schmitz
- New York City Poison Control Center NYU Langone Toxicology Fellowship, New York, NY, USA
| | - Anthony Scoccimarro
- Department of Emergency Medicine, NYC H+H/Lincoln, 234 E. 149thStreet Bronx, New York, NY, 10451, USA
| |
Collapse
|
2
|
Ifosfamide - History, efficacy, toxicity and encephalopathy. Pharmacol Ther 2023; 243:108366. [PMID: 36842616 DOI: 10.1016/j.pharmthera.2023.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In this review we trace the passage of fundamental ideas through 20th century cancer research that began with observations on mustard gas toxicity in World War I. The transmutation of these ideas across scientific and national boundaries, was channeled from chemical carcinogenesis labs in London via Yale and Chicago, then ultimately to the pharmaceutical industry in Bielefeld, Germany. These first efforts to checkmate cancer with chemicals led eventually to the creation of one of the most successful groups of cancer chemotherapeutic drugs, the oxazaphosphorines, first cyclophosphamide (CP) in 1958 and soon thereafter its isomer ifosfamide (IFO). The giant contributions of Professor Sir Alexander Haddow, Dr. Alfred Z. Gilman & Dr. Louis S. Goodman, Dr. George Gomori and Dr. Norbert Brock step by step led to this breakthrough in cancer chemotherapy. A developing understanding of the metabolic disposition of ifosfamide directed efforts to ameliorate its side-effects, in particular, ifosfamide-induced encephalopathy (IIE). This has resulted in several candidates for the encephalopathic metabolite, including 2-chloroacetaldehyde, 2-chloroacetic acid, acrolein, 3-hydroxypropionic acid and S-carboxymethyl-L-cysteine. The pros and cons for each of these, together with other IFO metabolites, are discussed in detail. It is concluded that IFO produces encephalopathy in susceptible patients, but CP does not, by a "perfect storm," involving all of these five metabolites. Methylene blue (MB) administration appears to be generally effective in the prevention and treatment of IIE, in all probability by the inhibition of monoamine oxidase in brain potentiating serotonin levels that modulate the effects of IFO on GABAergic and glutamatergic systems. This review represents the authors' analysis of a large body of published research.
Collapse
|
3
|
Tjahjono R, Nguyen K, Phung D, Riffat F, Palme CE. Methods of identification of parathyroid glands in thyroid surgery: A literature review. ANZ J Surg 2021; 91:1711-1716. [PMID: 34414647 DOI: 10.1111/ans.17117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Intra-operative identification and preservation of parathyroid glands is an important but challenging aspect of thyroid surgery. Failure to do so may lead to transient or permanent hypocalcaemia, where the latter represents a serious complication causing life-long morbidity. It would be beneficial, therefore, if a simple and reliable modality can be developed to assist in the identification of parathyroid glands intra-operatively. The aim of this literature review is to provide an overview of intra-operative modalities used to identify parathyroid glands with a particular focus on near-infrared autofluorescence (NIRAF). Twenty-seven studies were considered relevant in this literature review. Several modalities have been used to aid parathyroid gland identification, including Raman spectroscopy, indocyanine green angiography, and NIRAF. NIRAF technology allows parathyroid glands to spontaneously give off light (autofluorescence) when exposed to near-infrared light at a wavelength of 785 nm, creating a contrast between tissues to allow intra-operative differentiation. Studies utilising NIRAF technology were able to identify 76.3%-100% of parathyroid glands intra-operatively. Furthermore, two randomised controlled trials comparing NIRAF and white light showed that the use of NIRAF was able to significantly increase the mean number of parathyroid glands detected and reduce the incidence of post-operative hypocalcaemia. NIRAF is an emerging tool that has been shown to increase the number of intra-operative parathyroid gland identification and reduce the rate of post-operative hypocalcaemia in a safe and reproducible manner. Future trials are needed to evaluate the real-life impact of NIRAF technology in outcomes of patients following thyroid surgery.
Collapse
Affiliation(s)
- Richard Tjahjono
- Department of Otolaryngology Head and Neck Surgery, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Nguyen
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Daniel Phung
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Faruque Riffat
- Department of Otolaryngology Head and Neck Surgery, Westmead Hospital, Sydney, New South Wales, Australia.,Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Carsten E Palme
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Critical Care Management of the Patient With Anaphylaxis: A Concise Definitive Review. Crit Care Med 2021; 49:838-857. [PMID: 33653974 DOI: 10.1097/ccm.0000000000004893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Anaphylaxis is a rapidly progressive life-threatening syndrome manifesting as pruritus, urticaria, angioedema, bronchospasm and shock. The goal of this synthetic review is to provide a practical, updated approach to the evaluation and management of this disorder and associated complications. DATA SOURCES A MEDLINE search was conducted with the MeSH of anaphylaxis, anaphylactic reaction, anaphylactic shock, refractory anaphylaxis and subheadings of diagnosis, classification, epidemiology, complications and pharmacology. The level of evidence supporting an intervention was evaluated based on the availability of randomized studies, expert opinion, case studies, reviews, practice parameters and other databases (including Cochrane). STUDY SELECTION Selected publications describing anaphylaxis, clinical trials, diagnosis, mechanisms, risk factors and management were retrieved (reviews, guidelines, clinical trials, case series) and their bibliographies were also reviewed to identify relevant publications. DATA EXTRACTION Data from the relevant publications were reviewed, summarized and the information synthesized. DATA SYNTHESIS This is a synthetic review and the data obtained from a literature review was utilized to describe current trends in the diagnosis and management of the patient with anaphylaxis with a special emphasis on newer evolving concepts of anaphylaxis endotypes and phenotypes, management of refractory anaphylaxis in the ICU setting and review of therapeutic options for the elderly patient, or the complicated patient with severe cardiorespiratory complications. Most of the recommendations come from practice parameters, case studies or expert opinions, with a dearth of randomized trials to support specific interventions. CONCLUSION Anaphylaxis is a rapidly progressive life-threatening disorder. The critical care physician needs to be familiar with the diagnosis, differential diagnosis, evaluation, and management of anaphylaxis. Skilled intervention in ICUs may be required for the patient with complicated, severe, or refractory anaphylaxis.
Collapse
|
5
|
Photosensitizers attenuate LPS-induced inflammation: implications in dentistry and general health. Lasers Med Sci 2020; 36:913-926. [PMID: 33150475 DOI: 10.1007/s10103-020-03180-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) is a complementary therapeutic modality for periodontal and endodontic diseases, in which Gram-negative bacteria are directly involved. Currently, there are few evidences regarding the effects of aPDT on bacterial components such as lipopolysaccharide (LPS) and it would represent a major step forward in the clinical use of this therapy. In this context, this study aimed to evaluate the efficacy of different photosensitizers (PSs) used in aPDT in LPS inhibition. Four PSs were used in this study: methylene blue (MB), toluidine blue (TBO), new methylene blue (NMB), and curcumin (CUR). Different approaches to evaluate LPS interaction with PSs were used, such as spectrophotometry, Limulus amebocyte lysate (LAL) test, functional assays using mouse macrophages, and an in vivo model of LPS injection. Spectrophotometry showed that LPS decreased the absorbance of all PSs used, indicating interactions between the two species. LAL assay revealed significant differences in LPS concentrations upon pre-incubation with the different PSs. Interestingly, the inflammatory potential of LPS decreased after previous treatment with the four PSs, resulting in decreased secretion of inflammatory cytokines by macrophages. In vivo, pre-incubating curcumin with LPS prevented animals from undergoing septic shock within the established time. Using relevant models to study the inflammatory activity of LPS, we found that all PSs used in this work decreased LPS-induced inflammation, with a more striking effect observed for NMB and curcumin. These data advance the understanding of the mechanisms of LPS inhibition by PSs.
Collapse
|
6
|
de Beer F, Petzer JP, Petzer A. Monoamine oxidase inhibition by selected dye compounds. Chem Biol Drug Des 2020; 95:355-367. [PMID: 31834986 DOI: 10.1111/cbdd.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022]
Abstract
Monoamine oxidase (MAO) is an important drug target as the MAO isoforms play key roles in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as in neuropsychiatric diseases such as depression. Methylene blue is an inhibitor of MAO-A, while azure B, the major metabolite of methylene blue, and various other structural analogues retain the ability to inhibit MAO-A. Based on this, the present study evaluated 22 dyes, many of which are structurally related to methylene blue, as potential inhibitors of human MAO-A and MAO-B. The results highlighted three dye compounds as good potency competitive and reversible MAO inhibitors, and which exhibit higher MAO inhibition than methylene blue: acridine orange, oxazine 170 and Darrow red. Acridine orange was found to be a MAO-A specific inhibitor (IC50 = 0.017 μM), whereas oxazine 170 is a MAO-B specific inhibitor (IC50 = 0.0065 μM). Darrow red was found to be a non-specific MAO inhibitor (MAO-A, IC50 = 0.059 μM; MAO-B, IC50 = 0.065 μM). These compounds may be advanced for further testing and preclinical development, or be used as possible lead compounds for the future design of MAO inhibitors.
Collapse
Affiliation(s)
- Franciska de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
|
8
|
Bartakke A, Corredor C, van Rensburg A. Serotonin syndrome in the perioperative period. BJA Educ 2019; 20:10-17. [PMID: 33456910 DOI: 10.1016/j.bjae.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 10/25/2022] Open
Affiliation(s)
- A Bartakke
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - C Corredor
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - A van Rensburg
- Toronto General Hospital, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Scotton WJ, Hill LJ, Williams AC, Barnes NM. Serotonin Syndrome: Pathophysiology, Clinical Features, Management, and Potential Future Directions. Int J Tryptophan Res 2019; 12:1178646919873925. [PMID: 31523132 PMCID: PMC6734608 DOI: 10.1177/1178646919873925] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Serotonin syndrome (SS) (also referred to as serotonin toxicity) is a potentially life-threatening drug-induced toxidrome associated with increased serotonergic activity in both the peripheral (PNS) and central nervous systems (CNS). It is characterised by a dose-relevant spectrum of clinical findings related to the level of free serotonin (5-hydroxytryptamine [5-HT]), or 5-HT receptor activation (predominantly the 5-HT1A and 5-HT2A subtypes), which include neuromuscular abnormalities, autonomic hyperactivity, and mental state changes. Severe SS is only usually precipitated by the simultaneous initiation of 2 or more serotonergic drugs, but the syndrome can also occur after the initiation of a single serotonergic drug in a susceptible individual, the addition of a second or third agent to long-standing doses of a maintenance serotonergic drug, or after an overdose. The combination of a monoamine oxidase inhibitor (MAOI), in particular MAO-A inhibitors that preferentially inhibit the metabolism of 5-HT, with serotonergic drugs is especially dangerous, and may lead to the most severe form of the syndrome, and occasionally death. This review describes our current understanding of the pathophysiology, clinical presentation and management of SS, and summarises some of the drugs and interactions that may precipitate the condition. We also discuss the newer novel psychoactive substances (NPSs), a growing public health concern due to their increased availability and use, and their potential risk to evoke the syndrome. Finally, we discuss whether the inhibition of tryptophan hydroxylase (TPH), in particular the neuronal isoform (TPH2), may provide an opportunity to pharmacologically target central 5-HT synthesis, and so develop new treatments for severe, life-threatening SS.
Collapse
Affiliation(s)
- William J Scotton
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Adrian C Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nicholas M Barnes
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Hahn M, Roll SC. [Validation of interaction databases in psychopharmacotherapy]. DER NERVENARZT 2019; 89:319-326. [PMID: 28741067 DOI: 10.1007/s00115-017-0385-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Drug-drug interaction databases are an important tool to increase drug safety in polypharmacy. There are several drug interaction databases available but it is unclear which one shows the best results and therefore increases safety for the user of the databases and the patients. So far, there has been no validation of German drug interaction databases. GOAL Validation of German drug interaction databases regarding the number of hits, mechanisms of drug interaction, references, clinical advice, and severity of the interaction. METHODS A total of 36 drug interactions which were published in the last 3-5 years were checked in 5 different databases. Besides the number of hits, it was also documented if the mechanism was correct, clinical advice was given, primary literature was cited, and the severity level of the drug-drug interaction was given. RESULTS All databases showed weaknesses regarding the hit rate of the tested drug interactions, with a maximum of 67.7% hits. The highest score in this validation was achieved by MediQ with 104 out of 180 points. PsiacOnline achieved 83 points, arznei-telegramm® 58, ifap index® 54 and the ABDA-database 49 points. Based on this validation MediQ seems to be the most suitable databank for the field of psychopharmacotherapy. DISCUSSION The best results in this comparison were achieved by MediQ but this database also needs improvement with respect to the hit rate so that the users can rely on the results and therefore increase drug therapy safety.
Collapse
Affiliation(s)
- M Hahn
- Vitos Klinik Eichberg, Kloster-Eberbach-Str.4, 65346, Eltville, Deutschland.
| | - S C Roll
- Vitos Klinik Eichberg, Kloster-Eberbach-Str.4, 65346, Eltville, Deutschland
| |
Collapse
|
11
|
Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377:45-58. [PMID: 30649612 DOI: 10.1007/s00441-018-02987-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.
Collapse
|
12
|
|
13
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene Blue Analogues with Marginal Monoamine Oxidase Inhibition Retain Antidepressant-like Activity. ACS Chem Neurosci 2018; 9:2917-2928. [PMID: 29976053 DOI: 10.1021/acschemneuro.8b00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylene blue (MB) possesses diverse medical applications. Among these, MB presents with antidepressant-like effects in animals and has shown promise in clinical trials for the treatment of mood disorders. As an antidepressant, MB may act via various mechanisms which include modulation of the nitric oxide cyclic guanosine monophosphate (NO-cGMP) cascade, enhancement of mitochondrial respiration and antioxidant effects. MB is also, however, a high potency inhibitor of monoamine oxidase (MAO) A, which most likely contributes to its antidepressant effect, but also to its adverse effects profile (e.g., serotonin toxicity). The latter has raised the question whether it is possible to design out the MAO inhibition properties of MB yet retaining its clinically useful attributes. This study explores this idea further by characterizing five newly synthesized low MAO-A active MB analogues and examining their antidepressant-like properties in the acute forced swim test (FST) in rats, with comparison to imipramine and MB. The results show that all five analogues exhibit antidepressant-like properties in the FST without confounding effects on locomotor activity. The magnitude of these effects is comparable to those of imipramine and MB. Moreover, these newly synthesized MB analogues are markedly less potent MAO-A inhibitors (IC50 = 0.518-4.73 μM) than MB (IC50 = 0.07 μM). We postulate that such lower potency MAO-A inhibitors may present with a reduced risk of adverse effects associated with MAO-A inhibition. While low level MAO-A inhibition still may produce an antidepressant effect, we posit that other MB-related mechanisms may underlie their antidepressant effects, thereby representing a novel group of antidepressant compounds.
Collapse
Affiliation(s)
- Anzelle Delport
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
14
|
Zuschlag ZD, Warren MW, K. Schultz S. Serotonin Toxicity and Urinary Analgesics: A Case Report and Systematic Literature Review of Methylene Blue-Induced Serotonin Syndrome. PSYCHOSOMATICS 2018; 59:539-546. [DOI: 10.1016/j.psym.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
15
|
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32:1357-1382. [PMID: 28762173 DOI: 10.1007/s11011-017-0081-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
Methylene Blue (MB) is considered to have diverse medical applications and is a well-described treatment for methemoglobinemias and ifosfamide-induced encephalopathy. In recent years the focus has shifted to MB as an antimalarial agent and as a potential treatment for neurodegenerative disorders such as Alzheimer's disease. Of interest are reports that MB possesses antidepressant and anxiolytic activity in pre-clinical models and has shown promise in clinical trials for schizophrenia and bipolar disorder. MB is a noteworthy inhibitor of monoamine oxidase A (MAO-A), which is a well-established target for antidepressant action. MB is also recognized as a non-selective inhibitor of nitric oxide synthase (NOS) and guanylate cyclase. Dysfunction of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) cascade is strongly linked to the neurobiology of mood, anxiety and psychosis, while the inhibition of NOS and/or guanylate cyclase has been associated with an antidepressant response. This action of MB may contribute significantly to its psychotropic activity. However, these disorders are also characterised by mitochondrial dysfunction and redox imbalance. By acting as an alternative electron acceptor/donor MB restores mitochondrial function, improves neuronal energy production and inhibits the formation of superoxide, effects that also may contribute to its therapeutic activity. Using MB in depression co-morbid with neurodegenerative disorders, like Alzheimer's and Parkinson's disease, also represents a particularly relevant strategy. By considering their physicochemical and pharmacokinetic properties, analogues of MB may provide therapeutic potential as novel multi-target strategies in the treatment of depression. In addition, low MAO-A active analogues may provide equal or improved response with a lower risk of adverse effects.
Collapse
Affiliation(s)
- Anzelle Delport
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmacology, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Division of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
16
|
Delport A, Harvey BH, Petzer A, Petzer JP. The monoamine oxidase inhibition properties of selected structural analogues of methylene blue. Toxicol Appl Pharmacol 2017; 325:1-8. [DOI: 10.1016/j.taap.2017.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
|
17
|
Francescangeli J, Vaida S, Bonavia AS. Perioperative Diagnosis and Treatment of Serotonin Syndrome Following Administration of Methylene Blue. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:347-51. [PMID: 27210537 PMCID: PMC4917068 DOI: 10.12659/ajcr.897671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patient: Male, 67 Final Diagnosis: Serotonin syndrome Symptoms: Agitation • muscular spasticity, deficient muscular control • nystygmus • sweating • tachycardia Medication: Methylene Blue Clinical Procedure: Total abdominal colectomy Specialty: Anesthesiology
Collapse
Affiliation(s)
- James Francescangeli
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sonia Vaida
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Anthony S Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
18
|
Hogg RC. Contribution of Monoamine Oxidase Inhibition to Tobacco Dependence: A Review of the Evidence. Nicotine Tob Res 2015; 18:509-23. [PMID: 26508396 DOI: 10.1093/ntr/ntv245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND There is a hypothesis that substances present in, or derived from, tobacco smoke inhibit monoamine oxidase (MAO) in the brains of smokers, reducing the degradation of catecholamine neurotransmitters involved in central reward pathways and acting synergistically with nicotine to increase its addictive effects. OBJECTIVE The objective of this review was to evaluate the evidence for a role of MAO inhibition by tobacco-derived substances in tobacco dependence. INVESTIGATIONAL PLAN Relevant studies on the effects of tobacco use on MAO levels or activity in humans were identified by electronic searches. RESULTS The identified data show a clear association between smoking and lower density of MAO-A and MAO-B binding sites in the brains of smokers and strong evidence that MAO is inhibited by a substance or substances in, or derived from, tobacco smoke. There was little evidence to support the hypothesis that low MAO levels/activity is a predictive factor for tobacco use. Substances that inhibit MAO in in vitro assays have been isolated from tobacco leaves and tobacco smoke; however, no single substance has been shown to be absorbed from tobacco smoke and to inhibit MAO in the brains of human smokers. Nevertheless, it is possible that MAO inhibition in smokers could result from additive or synergistic effects of several tobacco-derived substances. MAO inhibition potentiates the reinforcing effects of intravenous nicotine in rodents; however, no data were identified to support the hypothesis that MAO inhibitors in or derived from tobacco or tobacco additives affect tobacco dependence in human smokers. IMPLICATIONS This comprehensive review describes the available evidence for the role of MAO inhibition in tobacco dependence and points the way for further research in this field. In view of the large number of MAO inhibitors identified in tobacco and tobacco smoke, identification of the putative inhibitors responsible for the lower level/activity of MAO in smokers may be impractical. Future studies must address whether the lower level/activity of MAO observed in smokers is also seen in users of other tobacco products and if this change is implicated in their dependence-inducing effects.
Collapse
Affiliation(s)
- Ron C Hogg
- Medical Writing, OmniScience Ltd, Geneva, Switzerland
| |
Collapse
|
19
|
Charbonneau A. [Not Available]. Can J Hosp Pharm 2015; 66:241-52. [PMID: 23950608 DOI: 10.4212/cjhp.v66i4.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Methylene blue is used in medical practice for various reasons. Recent findings point to a potential interaction with serotonin reuptake inhibitors (SRIs) that could lead to serotonergic toxicity. OBJECTIVE To describe the risk of serotonergic toxicity associated with the interaction between methylene blue and SRIs. DATA SOURCES Relevant publications were searched systematically via MEDLINE (1946 to March 21, 2013) and Embase (1974 to 2013, week 11) with the following search terms: "methylene blue", "methylthioninium", "monoamine oxidase inhibitors", "serotonin reup-take inhibitors", and "serotonin syndrome". No restrictions were applied in relation to the indication for methylene blue or the language of publication. The reference lists of identified articles were also searched. STUDY SELECTION AND DATA EXTRACTION Eighteen case reports and 2 case series were identified for inclusion. To date, no randomized controlled trials have been published. DATA SYNTHESIS The first case report indicating suspicion of an interaction between methylene blue and SRIs was published in 2003. Seventeen other case reports describing the same type of interaction have been published since then. The 2 case series provided data from about 325 parathyroidectomies in which methylene blue was used for staining. The 17 patients who experienced central nervous system toxicity were all taking SRIs in the preoperative period. CONCLUSION When administered in combination with SRIs, methylene blue may lead to serotonergic toxicity at doses as low as 0.7 mg/kg. Methylene blue would seem to have monoamine oxidase A inhibitory properties. Precautions should be taken to avoid this interaction. [Publisher's translation].
Collapse
Affiliation(s)
- Annie Charbonneau
- , B. Pharm, M. Sc., est pharmacienne ayant pour secteurs de pratique la médecine interne, la gériatrie ainsi que le Centre d'Information pharmacothérapeutique, Centre universitaire de santé McGill (CUSM), Montréal, Québec
| |
Collapse
|
20
|
Assessing the Risks Associated with Antidepressant Use in Plastic Surgery: A Systematic Review. Plast Reconstr Surg 2015; 136:1107-1119. [PMID: 26182175 DOI: 10.1097/prs.0000000000001696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Antidepressant use has increased dramatically over the past decade. Although there is no question about the benefits of these medications, uncertainty exists with regard to the implications of antidepressant treatment surrounding plastic surgery. This systematic review collates all of the available literature that evaluates the risks of patient antidepressant treatment, in relation to plastic surgery. METHODS A comprehensive literature review of the PubMed and Cochrane databases was conducted. Articles were assessed by two independent reviewers using predefined data fields and selected using specific inclusion criteria. The two authors independently reviewed the literature and extracted data from included reviews, and discrepancies were resolved by consensus. RESULTS Twenty-six articles were included in the analysis and were categorized into five groups for comparison: risk of bleeding, risk of breast cancer, risk of breast cancer recurrence, breast enlargement, and miscellaneous (unique complications). Extracted information included study type, statistical analyses, conclusion, and limitations. CONCLUSIONS This review does not support the cessation of antidepressants in patients before plastic surgery, as the numbers needed to harm are low and the implications of withdrawal may prove to be detrimental to postoperative management. However, the use of antidepressants for mental disorders may also implicate key patient risk factors for surgical complications, and sufficient exploration into the patient's indications for the prescription is crucial. Evidence so far does not suggest that antidepressants increase the risk of breast cancer or recurrence in general, but caution should be exercised for those specifically on concurrent tamoxifen and paroxetine treatment.
Collapse
|
21
|
Serotonin syndrome caused by administration of methylene blue to a patient receiving selective serotonin reuptake inhibitors. ACTA ACUST UNITED AC 2015; 2:111-2. [PMID: 25611875 DOI: 10.1097/acc.0b013e318294586d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 31-year-old man who had surgery after a gunshot injury was recovering in the intensive care unit when a sudden deterioration in his condition occurred after enteral administration of methylene blue to detect a fistula. Serotonin syndrome was diagnosed based on hyperthermia, ocular clonus, and excessive diaphoresis.
Collapse
|
22
|
Larson KJ, Wittwer ED, Nicholson WT, Weingarten TN, Price DL, Sprung J. Myoclonus in patient on fluoxetine after receiving fentanyl and low-dose methylene blue during sentinel lymph node biopsy. J Clin Anesth 2014; 27:247-51. [PMID: 25499271 DOI: 10.1016/j.jclinane.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/08/2014] [Indexed: 01/01/2023]
Abstract
Serotonin released in the nerve synapses is cleared through reuptake into presynaptic neurons and metabolism with monoamine oxidase (MAO). Therapy with selective serotonin reuptake inhibitors (SSRIs) or MAO inhibitors increases serotonin concentration in the synaptic cleft and may result in serotonin syndrome (SS). Our patient undergoing sentinel lymph node biopsy was on fluoxetine (SSRI) and intraoperatively developed SS after receiving fentanyl (200 μg) and methylene blue (MAO inhibitor), 7 mg subcutaneously into the scalp. Initial presentation was several episodes of generalized muscle activity, which was later diagnosed as lower extremity myoclonus consistent with SS. Upon awakening, the patient showed no evidence of encephalopathy, and the clonus was less intense. The patient was discharge home the next day. Our case suggests the possibility that even a small dose of methylene blue, when administered simultaneously with other serotoninergic medications, may be associated with serotonin toxicity.
Collapse
Affiliation(s)
- Kelly J Larson
- Department of Anesthesiology, Mayo Clinic, Rochester, MN
| | | | | | | | - Daniel L Price
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN
| | - Juraj Sprung
- Department of Anesthesiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
23
|
Carradori S, Petzer JP. Novel monoamine oxidase inhibitors: a patent review (2012 - 2014). Expert Opin Ther Pat 2014; 25:91-110. [PMID: 25399762 DOI: 10.1517/13543776.2014.982535] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Monoamine oxidase (MAO) inhibitors, despite the initial pharmacological interest, are used in clinic for their antidepressant effect and in the management of Parkinson symptoms, due to the established neuroprotective action. Efficacy and tolerability emerged from large-scale and randomized clinical trials. AREAS COVERED Thirty-six patents range from April 2012 to September 2014. The number of chemotypes with inhibitory effects on MAO is truly high (40 synthetic compounds, 22 natural products and 6 plant extracts reported and licensed), and the present review is comprehensive of all compounds, which have been patented for their relevance to clinical medicine in this period range (27 patents). Moreover, some of the collected patents deal with new formulations of compounds endowed with MAO inhibitory properties (two patents) and new therapeutic options/drug associations for already known MAO inhibitors (seven patents). EXPERT OPINION The patents reported in this review showed that the interest in this field is constant and mainly devoted to the study of selective MAO-B inhibitors, used as drugs for the treatment of neurological disorders. The development of novel human MAO inhibitors took advantage of the discovery of new therapeutic targets (cancer, hair loss, muscle dystrophies, cocaine addiction and inflammation), the recognized role of MAOs as molecular biomarkers and their activity in other tissues.
Collapse
Affiliation(s)
- Simone Carradori
- Sapienza University of Rome, Department of Drug Chemistry and Technologies , P.le A. Moro 5, 00185, Rome , Italy +39 06 49913149 ; +39 06 49913923 ;
| | | |
Collapse
|
24
|
Delport A, Harvey BH, Petzer A, Petzer JP. Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties. Life Sci 2014; 117:56-66. [DOI: 10.1016/j.lfs.2014.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 11/28/2022]
|
25
|
Rojas-Fernandez CH. Can 5-HT 3 Antagonists Really Contribute to Serotonin Toxicity? A Call for Clarity and Pharmacological Law and Order. Drugs Real World Outcomes 2014; 1:3-5. [PMID: 27747475 PMCID: PMC4883185 DOI: 10.1007/s40801-014-0004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos H Rojas-Fernandez
- Schlegel Research Chair in Geriatric Pharmacotherapy Schlegel-UW Research Institute on Ageing & School of Pharmacy, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
26
|
Changes in intensity of serotonin syndrome caused by adverse interaction between monoamine oxidase inhibitors and serotonin reuptake blockers. Neuropsychopharmacology 2014; 39:1996-2007. [PMID: 24577320 PMCID: PMC4059910 DOI: 10.1038/npp.2014.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 11/08/2022]
Abstract
Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity.
Collapse
|
27
|
Stanford SC. Psychostimulants, antidepressants and neurokinin-1 receptor antagonists ('motor disinhibitors') have overlapping, but distinct, effects on monoamine transmission: the involvement of L-type Ca2+ channels and implications for the treatment of ADHD. Neuropharmacology 2014; 87:9-18. [PMID: 24727210 DOI: 10.1016/j.neuropharm.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022]
Abstract
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Meiring L, Petzer JP, Petzer A. Inhibition of monoamine oxidase by 3,4-dihydro-2(1H)-quinolinone derivatives. Bioorg Med Chem Lett 2013; 23:5498-502. [DOI: 10.1016/j.bmcl.2013.08.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 11/17/2022]
|
29
|
Haberzettl R, Bert B, Fink H, Fox MA. Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 2013; 256:328-45. [PMID: 24004848 DOI: 10.1016/j.bbr.2013.08.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/16/2022]
Abstract
The serotonin syndrome (SS) is a potentially life-threatening disorder in humans which is induced by ingestion of an overdose or by combination of two or more serotonin (5-HT)-enhancing drugs. In animals, acute administration of direct and indirect 5-HT agonists also leads to a set of behavioral and autonomic responses. In the current review, we provide an overview of the existing versions of the animal model of the SS. With a focus on studies in rats and mice, we analyze the frequency of behavioral and autonomic responses following administration of 5-HT-enhancing drugs and direct 5-HT agonists administered alone or in combination, and we briefly discuss the receptor mediation of these responses. Considering species differences, we identify a distinct set of behavioral and autonomic responses that are consistently observed following administration of direct and indirect 5-HT agonists. Finally, we discuss the importance of a standardized assessment of SS responses in rodents and the utility of animal models of the SS in translational studies, and provide suggestions for future research.
Collapse
Affiliation(s)
- Robert Haberzettl
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Petzer A, Pienaar A, Petzer JP. The interactions of caffeine with monoamine oxidase. Life Sci 2013; 93:283-7. [PMID: 23850513 DOI: 10.1016/j.lfs.2013.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 11/25/2022]
Abstract
AIMS Caffeine has been used as a scaffold for the design of inhibitors of monoamine oxidase (MAO) A and B. Substitution at the C8 position with a variety of moieties yields structures with high MAO inhibition potencies. Although the MAO inhibitory properties of numerous caffeine derivatives have been characterized, the possibility that caffeine inhibits the MAOs has not been investigated in detail. Based on the therapeutic applications and potential adverse effects of MAO inhibition, this study examines the interactions of caffeine with the MAOs. MAIN METHODS Employing the recombinant human enzymes, the potencies by which caffeine inhibits the in vitro catalytic activities of the MAOs were recorded and expressed as the IC₅₀ and Ki values. The reversibility of inhibition was determined by measuring the recovery of enzyme activity after dialysis of enzyme-caffeine mixtures. KEY FINDINGS Caffeine acts as a MAO inhibitor with Ki values of 0.70 mM and 3.83 mM for the inhibition of MAO-A and MAO-B, respectively. The results show that caffeine binds reversibly and competitively to both MAO enzymes. SIGNIFICANCE Although structural modifications of caffeine lead to highly potent MAO inhibitors, caffeine is a weak inhibitor of MAO-A and MAO-B. At plasma concentrations (approximately 1-10 μM) achieved by normal human consumption, the MAO inhibitory potencies of caffeine are unlikely to be of pharmacological relevance in humans. The MAO inhibitory effects of caffeine should however be taken into consideration when using this drug in vitro and in tissue culture experiments where higher doses and concentrations of caffeine are often used.
Collapse
Affiliation(s)
- Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | | | | |
Collapse
|
31
|
Csoti I, Storch A, Müller W, Jost WH. Drug interactions with selegiline versus rasagiline. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
The role of methylene blue in serotonin syndrome following cardiac transplantation: a case report and review of the literature. J Thorac Cardiovasc Surg 2012; 144:e113-6. [PMID: 22982035 DOI: 10.1016/j.jtcvs.2012.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023]
|
33
|
Nabbi R, Riess ML, Woehlck HJ. Angiotensin-receptor-blocker-induced refractory hypotension responds to methylene blue. Acta Anaesthesiol Scand 2012; 56:933-4. [PMID: 22571734 DOI: 10.1111/j.1399-6576.2012.02710.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
McDonnell AM, Rybak I, Wadleigh M, Fisher DC. Suspected serotonin syndrome in a patient being treated with methylene blue for ifosfamide encephalopathy. J Oncol Pharm Pract 2012; 18:436-9. [PMID: 22235061 DOI: 10.1177/1078155211433231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methylene blue has been used not only as a diagnostic agent, but also as an agent in the treatment of ifosfamide-induced encephalopathy (IIE) for several years. Recently, several cases of suspected serotonin syndrome have been reported in patients who received methylene blue in combination with serotonin active agents. Rodent models have revealed that methylene blue is a potent, reversible inhibitor of monoamine oxidase A. It is well known that serotonin active drugs, in combination with monoamine oxidase inhibitors can produce profound serotonin syndrome. To date, cases of serotonin syndrome, which resulted from concurrent methylene blue and serotonin active agents, have been published in the anesthesia literature. We report the first known case of serotonin syndrome in a patient receiving methylene blue for IIE.
Collapse
Affiliation(s)
- A M McDonnell
- Department of Pharmacy, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
Petzer A, Harvey BH, Wegener G, Petzer JP. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 2011; 258:403-9. [PMID: 22197611 DOI: 10.1016/j.taap.2011.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/25/2022]
Abstract
Methylene blue (MB) has been shown to act at multiple cellular and molecular targets and as a result possesses diverse medical applications. Among these is a high potency reversible inhibition of monoamine oxidase A (MAO-A) that may, at least in part, underlie its adverse effects but also its psycho- and neuromodulatory actions. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl species, is the major metabolite. Similar to MB, azure B also displays a variety of biological activities and may therefore contribute to the pharmacological profile of MB. Based on these observations, the present study examines the interactions of azure B with recombinant human MAO-A and -B. The results show that azure B is a potent MAO-A inhibitor (IC₅₀=11 nM), approximately 6-fold more potent than is MB (IC₅₀=70 nM) under identical conditions. Measurements of the time-dependency of inhibition suggest that the interaction of azure B with MAO-A is reversible. Azure B also reversibly inhibits the MAO-B isozyme with an IC₅₀ value of 968 nM. These results suggest that azure B may be a hitherto under recognized contributor to the pharmacology and toxicology of MB by blocking central and peripheral MAO-A activity and as such needs to be considered during its use in humans and animals.
Collapse
Affiliation(s)
- Anél Petzer
- Unit for Drug Research and Development, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | | | | | |
Collapse
|
36
|
Lenglet S, Mach F, Montecucco F. Methylene blue: potential use of an antique molecule in vasoplegic syndrome during cardiac surgery. Expert Rev Cardiovasc Ther 2011; 9:1519-1525. [PMID: 22103871 DOI: 10.1586/erc.11.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vasoplegic syndrome is a common complication of cardiopulmonary bypass, appearing with an incidence ranging between 5 and 25%. It is characterized by significant hypotension, high or normal cardiac output and low systemic vascular resistance. This syndrome is hypothesized to be caused by the inflammation-mediated dysregulation of endothelial homeostasis and subsequent endothelial dysfunction. In vasoplegic syndrome, the inhibition of the nitric oxide/cyclic guanosine monophosphate pathway with concomitant administration with traditional ionotropes may represent a promising therapeutic option. Methylene blue, an inhibitor of nitric oxide synthase and guanylate cyclase, may contribute to the improvement of refractory hypotension associated with endothelial dysfunction in vasoplegia. In this article, we will update evidence on the potential therapeutic use of methylene blue in vasoplegic syndrome.
Collapse
Affiliation(s)
- Sébastien Lenglet
- Division of Cardiology, Faculty of Medicine, Foundation for Medical Research, Geneva University Hospitals, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
37
|
Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 2011; 31:93-117. [PMID: 19760660 DOI: 10.1002/med.20177] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylene Blue (MB), following its introduction to biology in the 19th century by Ehrlich, has found uses in various areas of medicine and biology. At present, MB is the first line of treatment in methemoglobinemias, is used frequently in the treatment of ifosfamide-induced encephalopathy, and is routinely employed as a diagnostic tool in surgical procedures. Furthermore, recent studies suggest that MB has beneficial effects in Alzheimer's disease and memory improvement. Although the modulation of the cGMP pathway is considered the most significant effect of MB, mediating its pharmacological actions, recent studies indicate that it has multiple cellular and molecular targets. In the majority of cases, biological effects and clinical applications of MB are dictated by its unique physicochemical properties including its planar structure, redox chemistry, ionic charges, and light spectrum characteristics. In this review article, these physicochemical features and the actions of MB on multiple cellular and molecular targets are discussed with regard to their relevance to the nervous system.
Collapse
Affiliation(s)
- Murat Oz
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
38
|
Wegener G, Volke V. Nitric Oxide Synthase Inhibitors as Antidepressants. Pharmaceuticals (Basel) 2010; 3:273-299. [PMID: 27713253 PMCID: PMC3991030 DOI: 10.3390/ph3010273] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/07/2010] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Abstract
Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, University of Aarhus, Skovagervej 2, DK-8240 Risskov, Denmark.
| | - Vallo Volke
- Department of Physiology, University of Tartu, Ravila 19, EE-70111 Tartu, Estonia.
| |
Collapse
|