1
|
Bernabe CS, Caliman IF, de Abreu ARR, Molosh AI, Truitt WA, Shekhar A, Johnson PL. Identification of a novel perifornical-hypothalamic-area-projecting serotonergic system that inhibits innate panic and conditioned fear responses. Transl Psychiatry 2024; 14:60. [PMID: 38272876 PMCID: PMC10811332 DOI: 10.1038/s41398-024-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The serotonin (5-HT) system is heavily implicated in the regulation of anxiety and trauma-related disorders such as panic disorder and post-traumatic stress disorder, respectively. However, the neural mechanisms of how serotonergic neurotransmission regulates innate panic and fear brain networks are poorly understood. Our earlier studies have identified that orexin (OX)/glutamate neurons within the perifornical hypothalamic area (PFA) play a critical role in adaptive and pathological panic and fear. While site-specific and electrophysiological studies have shown that intracranial injection and bath application of 5-HT inhibits PFA neurons via 5-HT1a receptors, they largely ignore circuit-specific neurotransmission and its physiological properties that occur in vivo. Here, we investigate the role of raphe nuclei 5-HT inputs into the PFA in panic and fear behaviors. We initially confirmed that photostimulation of glutamatergic neurons in the PFA of rats produces robust cardioexcitation and flight/aversive behaviors resembling panic-like responses. Using the retrograde tracer cholera toxin B, we determined that the PFA receives discrete innervation of serotonergic neurons clustered in the lateral wings of the dorsal (lwDRN) and in the median (MRN) raphe nuclei. Selective lesions of these serotonergic projections with saporin toxin resulted in similar panic-like responses during the suffocation-related CO2 challenge and increased freezing to fear-conditioning paradigm. Conversely, selective stimulation of serotonergic fibers in the PFA attenuated both flight/escape behaviors and cardioexcitation responses elicited by the CO2 challenge and induced conditioned place preference. The data here support the hypothesis that PFA projecting 5-HT neurons in the lwDRN/MRN represents a panic/fear-off circuit and may also play a role in reward behavior.
Collapse
Affiliation(s)
- Cristian S Bernabe
- Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Izabela F Caliman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aline R R de Abreu
- Departamento de Alimentos, Escola de Nutrição da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Andrei I Molosh
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Anantha Shekhar
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip L Johnson
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
2
|
Rosa DS, Frias AT, Vilela-Costa HH, Junior AS, Sant’Ana AB, Fusse EJ, Suchecki D, Campos AC, Lovick TA, Zangrossi H. Neonatal maternal deprivation facilitates the expression of a panic-like escape behavior in adult rats. Behav Brain Res 2022; 434:114031. [DOI: 10.1016/j.bbr.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
3
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Monosynaptic Input Mapping of Diencephalic Projections to the Cerebrospinal Fluid-Contacting Nucleus in the Rat. Front Neuroanat 2020; 14:7. [PMID: 32180709 PMCID: PMC7059736 DOI: 10.3389/fnana.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-contacting) nucleus receives from the diencephalon and to speculate on the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in SD rats according to the experimental formula of the stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the diencephalon was sliced at 40 μm with a freezing microtome. CB-immunofluorescence was performed on all diencephalic sections. The features of CB-positive neuron distribution in the diencephalon were observed with a fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the epithalamus, subthalamus, and hypothalamus. Three functional diencephalic areas including 43 sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive neurons were distributed in different density ranges: sparse, moderate, and dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that receives anatomical inputs from the diencephalon, we preliminarily assume that the CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress, emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the diencephalon, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Dos Anjos-Garcia T, Coimbra NC. Opposing roles of dorsomedial hypothalamic CB1 and TRPV1 receptors in anandamide signaling during the panic-like response elicited in mice by Brazilian rainbow Boidae snakes. Psychopharmacology (Berl) 2019; 236:1863-1874. [PMID: 30694375 DOI: 10.1007/s00213-019-5170-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE The endocannabinoid system plays an important role in the organization of panic-like defensive behavior. Threatening situations stimulate brain areas, such as the dorsomedial hypothalamus (DMH). However, there is a lack of studies addressing the role of the DMH endocannabinoid system in panic-like responses. OBJECTIVES We aimed to verify which mechanisms underlie anandamide-mediated responses in the DMH. METHODS To test the hypothesis that the anandamide produces panicolytic-like effects, we treated mice with intra-DMH microinjections of vehicle or increasing doses of anandamide (0.5, 5, or 50 pmol) and then performed confrontation with the South American snake Epicrates cenchria assisi. RESULTS Intra-DMH anandamide treatment yielded a U-shaped dose-response curve with no effect of the lowest (0.5 pmol) or the highest (50 pmol) dose and significant inhibition of panic-like responses at the intermediate (5 pmol) dose. In addition, this panicolytic-like effect was prevented by pretreatment of the DMH with the CB1 receptor antagonist AM251 (100 pmol). However, pretreatment of the DMH with the TRPV1 receptor antagonist 6-iodo-nordihydrocapsaicin (3 nmol) restored the panicolytic-like effect of the highest dose of anandamide. Immunohistochemistry revealed that CB1 receptors were present primarily on axonal fibers, while TRPV1 receptors were found almost exclusively surrounding the perikarya in DMH. CONCLUSIONS The present results suggest that anandamide exerts a panicolytic-like effect in the DMH by activation of CB1 receptors and that TRPV1 receptors are related to the lack of effect of the highest dose of anandamide.
Collapse
Affiliation(s)
- Tayllon Dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Behavioural Neuroscience Institute (INeC), Av. do Café, 2450, Ribeirão Preto, São Paulo, 14050-220, Brazil.
| |
Collapse
|
5
|
Hypothalamic endocannabinoid signalling modulates aversive responses related to panic attacks. Neuropharmacology 2019; 148:284-290. [DOI: 10.1016/j.neuropharm.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 01/29/2023]
|
6
|
Kroes MCW, Henckens MJAG, Homberg JR. How serotonin transporter gene variance affects defensive behaviours along the threat imminence continuum. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Vilela-Costa HH, Spiacci A, Bissolli IG, Zangrossi H. A Shift in the Activation of Serotonergic and Non-serotonergic Neurons in the Dorsal Raphe Lateral Wings Subnucleus Underlies the Panicolytic-Like Effect of Fluoxetine in Rats. Mol Neurobiol 2019; 56:6487-6500. [DOI: 10.1007/s12035-019-1536-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023]
|
8
|
Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, Sakimura K, Ito S. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018; 11:63. [PMID: 30359304 PMCID: PMC6202847 DOI: 10.1186/s13041-018-0407-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1 (Caskin1) is a direct binding partner of the synaptic adaptor protein CASK. Because Caskin1 forms homo-multimers and binds not only CASK but also other neuronal proteins in vitro, it is anticipated to have neural functions; but its exact role in mammals remains unclear. Previously, we showed that the concentration of Caskin1 in the spinal dorsal horn increases under chronic pain. To characterize this protein, we generated Caskin1-knockout (Caskin1-KO) mice and specific anti-Caskin1 antibodies. Biochemical and immunohistochemical analyses demonstrated that Caskin1 was broadly distributed in the whole brain and spinal cord, and that it primarily localized at synapses. To elucidate the neural function of Caskin1 in vivo, we subjected Caskin1-KO mice to comprehensive behavioral analysis. The mutant mice exhibited differences in gait, enhanced nociception, and anxiety-like behavior relative to their wild-type littermates. In addition, the knockouts exhibited strong freezing responses, with or without a cue tone, in contextual and cued-fear conditioning tests as well as low memory retention in the Barnes Maze test. Taken together, these results suggest that Caskin1 contributes to a wide spectrum of behavioral phenotypes, including gait, nociception, memory, and stress response, in broad regions of the central nervous system.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194 Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
- Department of Neurology, University of California, San Francisco, 94158 USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638 Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| |
Collapse
|
9
|
Roncon CM, Yamashita PSDM, Frias AT, Audi EA, Graeff FG, Coimbra NC, Zangrossi H. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses. J Psychopharmacol 2017; 31:715-721. [PMID: 28583050 DOI: 10.1177/0269881117693747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.
Collapse
Affiliation(s)
- Camila Marroni Roncon
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Shimene de Melo Yamashita
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Alana Tercino Frias
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elisabeth Aparecida Audi
- 3 Laboratory of Psychopharmacology, Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Frederico Guilherme Graeff
- 4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,4 Behavioural Neurosciences Institute (INeC), Ribeirão Preto, São Paulo, Brazil.,5 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
Graeff FG. Translational approach to the pathophysiology of panic disorder: Focus on serotonin and endogenous opioids. Neurosci Biobehav Rev 2017; 76:48-55. [DOI: 10.1016/j.neubiorev.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
|
11
|
Stamper CE, Hassell JE, Kapitz AJ, Renner KJ, Orchinik M, Lowry CA. Activation of 5-HT 1A receptors in the rat dorsomedial hypothalamus inhibits stress-induced activation of the hypothalamic-pituitary-adrenal axis. Stress 2017; 20:223-230. [PMID: 28345385 DOI: 10.1080/10253890.2017.1301426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to the release of corticosteroid hormones into the circulation, is an adaptive response to perceived threats. Persistent activation of the HPA axis can lead to impaired physiological or behavioral function with maladaptive consequences. Thus, efficient control and termination of stress responses is essential for well-being. However, inhibitory control mechanisms governing the HPA axis are poorly understood. Previous studies suggest that serotonergic systems, acting within the medial hypothalamus, play an important role in inhibitory control of stress-induced HPA axis activity. To test this hypothesis, we surgically implanted chronic jugular cannulae in adult male rats and conducted bilateral microinjection of vehicle or the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT; 8 nmol, 0.2 μL, 0.1 μL/min, per side) into the dorsomedial hypothalamus (DMH) immediately prior to a 40 min period of restraint stress. Repeated blood sampling was conducted using an automated blood sampling system and plasma corticosterone concentrations were determined using enzyme-linked immunosorbent assay. Bilateral intra-DMH microinjections of 8-OH-DPAT suppressed stress-induced increases in plasma corticosterone within 10 min of the onset of handling prior to restraint and, as measured by area-under-the-curve analysis of plasma corticosterone concentrations, during the 40 min period of restraint. These data support an inhibitory role for serotonergic systems, acting within the DMH, on stress-induced activation of the HPA axis. Lay summary: Inhibitory control of the hypothalamic-pituitary-adrenal (HPA) stress hormone response is important for well-being. One neurochemical implicated in inhibitory control of the HPA axis is serotonin. In this study we show that activation of serotonin receptors, specifically inhibitory 5-HT1A receptors in the dorsomedial hypothalamus, is sufficient to inhibit stress-induced HPA axis activity in rats.
Collapse
Affiliation(s)
- Christopher E Stamper
- a Department of Integrative Physiology and Center for Neuroscience , University of Colorado Boulder , Boulder , CO , USA
| | - James E Hassell
- a Department of Integrative Physiology and Center for Neuroscience , University of Colorado Boulder , Boulder , CO , USA
| | - Adam J Kapitz
- a Department of Integrative Physiology and Center for Neuroscience , University of Colorado Boulder , Boulder , CO , USA
| | - Kenneth J Renner
- b Department of Biology , University of South Dakota , Vermillion , SD , USA
| | - Miles Orchinik
- c School of Life Sciences, Arizona State University , Tempe , AZ , USA
| | - Christopher A Lowry
- a Department of Integrative Physiology and Center for Neuroscience , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
12
|
Soares VP, Campos AC. Evidences for the Anti-panic Actions of Cannabidiol. Curr Neuropharmacol 2017; 15:291-299. [PMID: 27157263 PMCID: PMC5412699 DOI: 10.2174/1570159x14666160509123955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/26/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Panic disorder (PD) is a disabling psychiatry condition that affects approximately 5% of the worldwide population. Currently, long-term selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for PD; however, the common side-effect profiles and drug interactions may provoke patients to abandon the treatment, leading to PD symptoms relapse. Cannabidiol (CBD) is the major non-psychotomimetic constituent of the Cannabis sativa plant with anti-anxiety properties that has been suggested as an alternative for treating anxiety disorders. The aim of the present review was to discuss the effects and mechanisms involved in the putative anti-panic effects of CBD. METHODS electronic database was used as source of the studies selected selected based on the studies found by crossing the following keywords: cannabidiol and panic disorder; canabidiol and anxiety, cannabidiol and 5-HT1A receptor). RESULTS In the present review, we included both experimental laboratory animal and human studies that have investigated the putative anti-panic properties of CBD. Taken together, the studies assessed clearly suggest an anxiolytic-like effect of CBD in both animal models and healthy volunteers. CONCLUSION CBD seems to be a promising drug for the treatment of PD. However, novel clinical trials involving patients with the PD diagnosis are clearly needed to clarify the specific mechanism of action of CBD and the safe and ideal therapeutic doses of this compound.
Collapse
Affiliation(s)
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, 3900 Bandeirantes avenue, Ribeirao Preto-SP, Brazil
| |
Collapse
|
13
|
Biagioni AF, de Oliveira RC, de Oliveira R, da Silva JA, dos Anjos-Garcia T, Roncon CM, Corrado AP, Zangrossi H, Coimbra NC. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception. Eur Neuropsychopharmacol 2016; 26:532-45. [PMID: 26749090 DOI: 10.1016/j.euroneuro.2015.12.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Abstract
The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.
Collapse
Affiliation(s)
- Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Ricardo de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; Mato Grosso Federal University Medical School (UFMT), Av. Alexandre Ferronato, 1200, Reserva 35, Setor Industrial, 78550-000 Sinop, Mato Grosso, Brazil
| | - Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Tayllon dos Anjos-Garcia
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Camila Marroni Roncon
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil
| | - Alexandre Pinto Corrado
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Hélio Zangrossi
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo 14050-220, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
14
|
Biagioni AF, Anjos-Garcia TD, Ullah F, Fisher IR, Falconi-Sobrinho LL, Freitas RLD, Felippotti TT, Coimbra NC. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test. Behav Brain Res 2016; 298:65-77. [DOI: 10.1016/j.bbr.2015.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 12/26/2022]
|
15
|
Andrews PW, Bharwani A, Lee KR, Fox M, Thomson JA. Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response. Neurosci Biobehav Rev 2015; 51:164-88. [DOI: 10.1016/j.neubiorev.2015.01.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
|
16
|
Stamper CE, Hennessey PA, Hale MW, Lukkes JL, Donner NC, Lowe KR, Paul ED, Spencer RL, Renner KJ, Orchinik M, Lowry CA. Role of the dorsomedial hypothalamus in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress 2015; 18:76-87. [PMID: 25556980 PMCID: PMC4367871 DOI: 10.3109/10253890.2015.1004537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggest that multiple corticolimbic and hypothalamic structures are involved in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, including the dorsomedial hypothalamus (DMH), but a potential role of the DMH has not been directly tested. To investigate the role of the DMH in glucocorticoid-mediated negative feedback, adult male Sprague Dawley rats were implanted with jugular cannulae and bilateral guide cannulae directed at the DMH, and finally were either adrenalectomized (ADX) or were subjected to sham-ADX. ADX rats received corticosterone (CORT) replacement in the drinking water (25 μg/mL), which, based on initial studies, restored a rhythm of plasma CORT concentrations in ADX rats that was similar in period and amplitude to the diurnal rhythm of plasma CORT concentrations in sham-ADX rats, but with a significant phase delay. Following recovery from surgery, rats received microinjections of either CORT (10 ng, 0.5 μL, 0.25 μL/min, per side) or vehicle (aCSF containing 0.2% EtOH), bilaterally, directly into the DMH, prior to a 40-min period of restraint stress. In sham-ADX rats, bilateral intra-DMH microinjections of CORT, relative to bilateral intra-DMH microinjections of vehicle, decreased restraint stress-induced elevation of endogenous plasma CORT concentrations 60 min after the onset of intra-DMH injections. Intra-DMH CORT decreased the overall area under the curve for plasma CORT concentrations during the intermediate time frame of glucocorticoid negative feedback, from 0.5 to 2 h following injection. These data are consistent with the hypothesis that the DMH is involved in feedback inhibition of HPA axis activity at the intermediate time frame.
Collapse
Affiliation(s)
- Christopher E. Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Patrick A. Hennessey
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Matthew W. Hale
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Jodi L. Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Nina C. Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Kenneth R. Lowe
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Evan D. Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0345, USA
| | - Kenneth J. Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Miles Orchinik
- Department of Organismal, Integrative, and Systems Biology, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| |
Collapse
|
17
|
Dorsomedial hypothalamus serotonin 1A receptors mediate a panic-related response in the elevated T-maze. Brain Res Bull 2014; 109:39-45. [DOI: 10.1016/j.brainresbull.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022]
|
18
|
Canteras NS, Graeff FG. Executive and modulatory neural circuits of defensive reactions: implications for panic disorder. Neurosci Biobehav Rev 2014; 46 Pt 3:352-64. [PMID: 24709069 DOI: 10.1016/j.neubiorev.2014.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/08/2014] [Accepted: 03/27/2014] [Indexed: 01/20/2023]
Abstract
The present review covers two independent approaches, a neuroanatomical and a pharmacological (focused on serotonergic transmission), which converge in highlighting the critical role of the hypothalamus and midbrain periaqueductal gray matter in the generation of panic attacks and in the mechanism of action of current antipanic medication. Accordingly, innate and learned fear responses to different threats (i.e., predator, aggressive members of the same species, interoceptive threats and painful stimuli) are processed by independent circuits involving corticolimbic regions (the amygdala, the hippocampus and the prefrontal and insular cortices) and downstream hypothalamic and brainstem circuits. As for the drug treatment, animal models of panic indicate that the drugs currently used for treating panic disorder should work by enhancing 5-HT inhibition of neural systems that command proximal defense in both the dorsal periaqueductal gray and in the medial hypothalamus. For the anticipatory anxiety, the reviewed evidence points to corticolimbic structures, such as the amygdala, the septo-hippocampus and the prefrontal cortex, as its main neural substrate, modulated by stimulation of 5-HT2C and 5-HT1A receptors.
Collapse
Affiliation(s)
- Newton S Canteras
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil; Núcleo de Apoio à Pesquisa em Neurobiologia das Emoções (NAP-NuPNE), Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Frederico G Graeff
- Instituto de Neurociências e Comportamento (INeC), Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Neurobiologia das Emoções (NAP-NuPNE), Universidade de São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Santos RO, de Assunção GLM, de Medeiros DMB, de Sousa Pinto IA, de Barros KS, Soares BL, André E, Gavioli EC, de Paula Soares-Rachetti V. Evaluation of the effect of acute sibutramine in female rats in the elevated T-maze and elevated plus-maze tests. Basic Clin Pharmacol Toxicol 2013; 114:181-7. [PMID: 24034271 DOI: 10.1111/bcpt.12131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/12/2013] [Indexed: 01/01/2023]
Abstract
Sibutramine is a serotonin and norepinephrine reuptake inhibitor indicated for the treatment of obesity. A pre-clinical study showed that acute administration of sibutramine promoted anxiolytic- and panicolytic-like effects in male rats. However, in clinical reports, sibutramine favoured the onset of panic attacks in women. In this study, the effect of sibutramine on experimental anxiety in females and the relevance of different oestrous cycle phases for this effect were analysed. In experiment 1, both male and female rats were submitted to acute intraperitoneal injection of sibutramine or vehicle 30 min. before testing in the elevated T-maze (ETM) and in the open-field test (OF). Females in the pro-oestrus (P), oestrus (E), early dioestrus (ED) and late dioestrus (LD) phases were tested in the ETM and OF (experiment 2) or in the elevated plus-maze (EPM) 30 min. after the injection of sibutramine. Sibutramine impaired the escape response in the ETM in both males and females. This effect was observed for P, E and ED, but not for LD females. Sibutramine altered neither the inhibitory avoidance in the ETM nor the behaviour of females in the EPM. Thus, sibutramine promoted a panicolytic-like effect in female rats cycling at P, E and ED, but not in the LD phase and did not alter behaviours related to anxiety in both ETM and EPM. Considering that pre-clinical studies aiming the screening of anxiolytic drugs employ male rodents, data here obtained reinforce the importance of better understanding the effects of drugs in females.
Collapse
Affiliation(s)
- Raliny O Santos
- Laboratory of Behavioural Pharmacology, Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|