1
|
Angoa-Perez M, Kuhn DM. The pharmacology and neurotoxicology of synthetic cathinones. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:61-82. [PMID: 38467489 DOI: 10.1016/bs.apha.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The synthetic cathinones are man-made compounds derived from the naturally occurring drug cathinone, which is found in the khat plant. The drugs in this pharmacological class that will be the focus of this chapter include mephedrone, MDPV, methcathinone and methylone. These drugs are colloquially known as "bath salts". This misnomer suggests that these drugs are used for health improvement or that they have legitimate medical uses. The synthetic cathinones are dangerous drugs with powerful pharmacological effects that include high abuse potential, hyperthermia and hyperlocomotion. These drugs also share many of the pharmacological effects of the amphetamine class of drugs including methamphetamine, amphetamine and MDMA and therefore have high potential to cause damage to the central nervous system. The synthetic cathinones are frequently taken in combination with other psychoactive drugs such as alcohol, marijuana and the amphetamine-like stimulants, creating a situation where heightened pharmacological and neurotoxicological effects are likely to occur. Despite the structural features shared by the synthetic cathinones and amphetamine-like stimulants, including their actions at monoamine transporters and receptors, the effects of the synthetic cathinones do not always match those of the amphetamines. In particular, the synthetic cathinones are far less neurotoxic than their amphetamine counterparts, they produce a weaker hyperthermia, and they cause less glial activation. This chapter will briefly review the pharmacology and neurotoxicology of selected synthetic cathinones with the aim of delineating key areas of agreement and disagreement in the literature particularly as it relates to neurotoxicological outcomes.
Collapse
Affiliation(s)
- Mariana Angoa-Perez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
2
|
Docherty JR, Alsufyani HA. Cardiovascular and temperature adverse actions of stimulants. Br J Pharmacol 2021; 178:2551-2568. [PMID: 33786822 DOI: 10.1111/bph.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The vast majority of illicit stimulants act at monoaminergic systems, causing both psychostimulant and adverse effects. Stimulants can interact as substrates or antagonists at the nerve terminal monoamine transporter that mediates the reuptake of monoamines across the nerve synaptic membrane and at the vesicular monoamine transporter (VMAT-2) that mediates storage of monoamines in vesicles. Stimulants can act directly at presynaptic or postsynaptic receptors for monoamines or have indirect monoamine-mimetic actions due to the release of monoamines. Cocaine and other stimulants can acutely increase the risk of sudden cardiac death. Stimulants, particularly MDMA, in hot conditions, such as that occurring at a "rave," have caused fatalities from the consequences of hyperthermia, often compounding cardiac adverse actions. This review examines the pharmacology of the cardiovascular and temperature adverse actions of stimulants.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Synthetic psychoactive cathinones: hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine. Pharmacol Biochem Behav 2020; 191:172871. [PMID: 32061662 DOI: 10.1016/j.pbb.2020.172871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Synthetic psychoactive cathinones (SPCs) are drugs with psychostimulant and entactogenic properties like methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). Despite clinical reports of human overdose, it remains to be determined if SPCs have greater propensity for adverse effects than MA or MDMA. OBJECTIVES To determine whether the SPCs cathinone (CAT), methcathinone (MCAT), mephedrone (MMC), and methylenedioxypyrovalerone (MDPV) have lower LD50 values than MA or MDMA. METHODS Male and female C57Bl/6J mice received single injections of one of 6 doses of a test drug (0-160 mg/kg IP). Temperature and behavioral observations were taken every 20 min for 2 h followed by euthanasia of surviving mice. Organs were weighed and evaluated for histopathological changes. RESULTS LD50 values for MA and MDMA, 84.5 and 100.9 mg/kg respectively, were similar to previous observations. The LD50 for MMC was 118.8 mg/kg, but limited lethality was observed for other SPCs (CAT, MCAT, MDPV), so LD50 values could not be calculated. For all drugs, death was associated with seizure, when it was observed. Rather than hyperthermia, dose-dependent hypothermia was observed for MMC, MDPV, CAT, and MCAT. Contrary to initial expectations, none of the SPCs studied here had LD50 values lower than MA or MDMA. CONCLUSIONS These data indicate that, under the conditions studied here: (1) SPCs exhibit less lethality than MA and MDMA; (2) SPCs impair thermoregulation; (3) effects of SPCs on temperature appear to be independent of effects on lethality.
Collapse
|
4
|
Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl) 2019; 236:1097-1106. [PMID: 30074064 DOI: 10.1007/s00213-018-4991-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023]
Abstract
RATIONALE Mephedrone is a commonly abused constituent of "bath salts" and has many pharmacological effects in common with methamphetamine. Despite their structural similarity, mephedrone differs significantly from methamphetamine in its effects on core body temperature and dopamine nerve endings. The reasons for these differences remain unclear. OBJECTIVES Mephedrone elicits a transient hypothermia which may provide intrinsic neuroprotection against methamphetamine-like toxicity to dopamine nerve endings. Furthermore, evidence in the literature suggests that this hypothermia is mediated by serotonin. By utilizing transgenic mice devoid of brain serotonin, we determined the contribution of this neurotransmitter to changes in core body temperature as well as its possible role in protecting against neurotoxicity. The effects of methcathinone and 4-methyl-methamphetamine, two structural analogs of mephedrone and methamphetamine, were also evaluated in these mice. RESULTS The hypothermia induced by mephedrone and methcathinone in wild-type mice was not observed in mice lacking brain serotonin. Despite preventing drug-induced hypothermia, the lack of serotonin did not alter the neurotoxic profiles of the test drugs. CONCLUSIONS Serotonin is a key mediator of pharmacological hypothermia induced by mephedrone and methcathinone, but these body temperature effects do not contribute to dopamine nerve ending damage observed in mice following treatment with mephedrone, methcathinone or 4-methyl-methamphetamine. Thus, the key component of methamphetamine neurotoxicity lacking in mephedrone remains to be elucidated.
Collapse
|
5
|
Smith KE, Stoops WW. Synthetic Cathinone Use Among Polysubstance Users: Indirect Indicator of Indiscriminate Drug Taking or Preferred Drug of Abuse? JOURNAL OF DRUG ISSUES 2019. [DOI: 10.1177/0022042619826079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A survey pertaining to synthetic cathinone (SC) use was completed by 499 polysubstance users enrolled in a residential recovery program in the Southeastern United States. Of the final sample, 28% reported ever SC use. SC-users, compared with nonusers, were more often younger (32.7 vs. 36.0, p = .001), White (93.4% vs. 80.8%, p = .001), and on probation/parole since 2010 (80.9% vs. 70.9%, p = .032). SC-users evidenced extensive drug histories and were less likely to be enrolled in an urban-based program, compared to a rural, Appalachian-based program (73.8% vs. 86.6%, p = .001). Use of synthetic cannabinoids (adjusted odds ratio [AOR] = 1.9, p = .044), kratom (AOR = 1.7, p = .045), and inhalants (AOR = 2.3, p = .001) were significantly associated with SC use. Approximately 23% of SC-users preferred SCs to amphetamines or cocaine; however, only 3.6% ranked SC as their most preferred drug. Past-year SC use declined to 6.6%. Among polysubstance users in this sample, SC use may be a potential indicator of versatile and indiscriminate drug-taking.
Collapse
Affiliation(s)
- Kirsten E. Smith
- University of Kentucky, Lexington, USA
- University of Louisville, KY, USA
| | | |
Collapse
|
6
|
Bessada SM, Alves RC, Oliveira MBP. Caffeine-based food supplements and beverages: Trends of consumption for performance purposes and safety concerns. Food Res Int 2018; 109:310-319. [DOI: 10.1016/j.foodres.2018.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/12/2023]
|
7
|
Alsufyani HA, Docherty JR. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur J Pharmacol 2017; 809:203-208. [PMID: 28529142 DOI: 10.1016/j.ejphar.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
We have investigated gender differences in the effects of cathinone and the interaction with caffeine on temperature and movement activity in Wistar rats. Telemetry probes were implanted in rats under isoflurane anaesthesia, and 7 days later, temperature and activity were recorded in conscious unrestrained animals. Caffeine (10mg/lkg) or vehicle, and 30min later, cathinone (5mg/kg) or vehicle, were injected subcutaneously. Cathinone produced significant and marked increases in activity, and the response to cathinone was significantly greater in female animals. The combination of caffeine and cathinone causes a short lived potentiation followed by a prolonged inhibition of the activity response to cathinone. Cathinone alone had minor effects on temperature. However, the combination of caffeine and cathinone produced a significant acute rise in temperature only in male rats in the 90min after cathinone injection. Hence, cathinone caused greater increases in activity in female than in male rats. Secondly, caffeine produced an initial potentiation followed by a prolonged inhibition of the activity response to cathinone. Thirdly, cathinone in combination with caffeine significantly raised temperature acutely in male but not female rats. These differences highlight the need to carry out gender studies of the actions of stimulants.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; Department of Physiology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
8
|
Štefková K, Židková M, Horsley RR, Pinterová N, Šíchová K, Uttl L, Balíková M, Danda H, Kuchař M, Páleníček T. Pharmacokinetic, Ambulatory, and Hyperthermic Effects of 3,4-Methylenedioxy- N-Methylcathinone (Methylone) in Rats. Front Psychiatry 2017; 8:232. [PMID: 29204126 PMCID: PMC5698284 DOI: 10.3389/fpsyt.2017.00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Methylone (3,4-methylenedioxy-N-methylcathinone) is a synthetic cathinone analog of the recreational drug ecstasy. Although it is marketed to recreational users as relatively safe, fatalities due to hyperthermia, serotonin syndrome, and multi-organ system failure have been reported. Since psychopharmacological data remain scarce, we have focused our research on pharmacokinetics, and on a detailed evaluation of temporal effects of methylone and its metabolite nor-methylone on behavior and body temperature in rats. Methylone [5, 10, 20, and 40 mg/kg subcutaneously (s.c.)] and nor-methylone (10 mg/kg s.c.) were used in adolescent male Wistar rats across three behavioral/physiological procedures and in two temporal windows from administration (15 and 60 min) in order to test: locomotor effects in the open field, sensorimotor gating in the test of prepulse inhibition (PPI), and effects on rectal temperature in individually and group-housed rats. Serum and brain pharmacokinetics after 10 mg/kg s.c. over 8 h were analyzed using liquid chromatography mass spectrometry. Serum and brain levels of methylone and nor-methylone peaked at 30 min after administration, both drugs readily penetrated the brain with serum: brain ratio 1:7.97. Methylone dose-dependently increased overall locomotion. It also decrease the amount of time spent in the center of open field arena in dose 20 mg/kg and additionally this dose induced stereotyped circling around the arena walls. The maximum of effects corresponded to the peak of its brain concentrations. Nor-methylone had approximately the same behavioral potency. Methylone also has weak potency to disturb PPI. Behavioral testing was not performed with 40 mg/kg, because it was surprisingly lethal to some animals. Methylone 10 and 20 mg/kg s.c. induced hyperthermic reaction which was more pronounced in group-housed condition relative to individually housed rats. To conclude, methylone increased exploration and/or decreased anxiety in the open field arena and with nor-methylone had short duration of action with effects typical for mixed indirect dopamine-serotonin agonists such as 3,4-metyhlenedioxymethamphetamine (MDMA) or amphetamine. Given the fact that the toxicity was even higher than the known for MDMA and that it can cause hyperthermia it possess a threat to users with the risk for serotonin syndrome especially when used in crowded conditions.
Collapse
Affiliation(s)
- Kristýna Štefková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Monika Židková
- First Faculty of Medicine, Institute of Forensic Medicine and Toxicology, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Nikola Pinterová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Balíková
- First Faculty of Medicine, Institute of Forensic Medicine and Toxicology, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Hynek Danda
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Martin Kuchař
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
9
|
Papaseit E, Moltó J, Muga R, Torrens M, de la Torre R, Farré M. Clinical Pharmacology of the Synthetic Cathinone Mephedrone. Curr Top Behav Neurosci 2017; 32:313-331. [PMID: 28012094 DOI: 10.1007/7854_2016_61] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4-Methyl-N-methylcathinone (mephedrone) is a popular new psychoactive substance (NPS) that is structurally related to the parent compound cathinone, the β-keto analogue of amphetamine. Mephedrone appeared on the street drug market as a substitute for 3,4-methylenedioxy-N-methylamphetamine (MDMA, ecstasy) and was subsequently banned due to the potential health risks associated with its use. Nevertheless, mephedrone continues to be widely consumed among specific populations, with unique patterns of misuse. To date, most information about the biological effects of mephedrone comes from user experiences, epidemiological data, clinical cases, toxicological findings, and animal studies, whilst there are very few data regarding its human pharmacodynamics and pharmacokinetics. This chapter reviews the available published data on patterns of mephedrone use, its acute and chronic effects, and its pharmacokinetic properties. More human research is needed to elucidate the safety, toxicity, and addiction potential of mephedrone and related NPS.
Collapse
Affiliation(s)
- Esther Papaseit
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - José Moltó
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Fundació Lluita contra la Sida, Badalona, Spain
| | - Robert Muga
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - Marta Torrens
- Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
- IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
- Institut de Neuropsiquiatria i Adiccions, Barcelona, Spain
| | - Rafael de la Torre
- IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Magí Farré
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.
- Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain.
| |
Collapse
|
10
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.29002.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Green AR, King MV, Shortall SE, Fone KCF. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br J Pharmacol 2014; 171:2251-68. [PMID: 24654568 DOI: 10.1111/bph.12628] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 12/05/2013] [Accepted: 12/11/2013] [Indexed: 01/15/2023] Open
Abstract
The substituted β-keto amphetamine mephedrone (4-methylmethcathinone) was banned in the UK in April 2010 but continues to be used recreationally in the UK and elsewhere. Users have compared its psychoactive effects to those of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'). This review critically examines the preclinical data on mephedrone that have appeared over the last 2-3 years and, where relevant, compares the pharmacological effects of mephedrone in experimental animals with those obtained following MDMA administration. Both mephedrone and MDMA enhance locomotor activity and change rectal temperature in rodents. However, both of these responses are of short duration following mephedrone compared with MDMA probably because mephedrone has a short plasma half-life and rapid metabolism. Mephedrone appears to have no pharmacologically active metabolites, unlike MDMA. There is also little evidence that mephedrone induces a neurotoxic decrease in monoamine concentration in rat or mouse brain, again in contrast to MDMA. Mephedrone and MDMA both induce release of dopamine and 5-HT in the brain as shown by in vivo and in vitro studies. The effect on 5-HT release in vivo is more marked with mephedrone even though both drugs have similar affinity for the dopamine and 5-HT transporters in vitro. The profile of action of mephedrone on monoamine receptors and transporters suggests it could have a high abuse liability and several studies have found that mephedrone supports self-administration at a higher rate than MDMA. Overall, current data suggest that mephedrone not only differs from MDMA in its pharmacological profile, behavioural and neurotoxic effects, but also differs from other cathinones.
Collapse
Affiliation(s)
- A R Green
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|