1
|
Peeters LD, Wills LJ, Cuozzo AM, Ahmed CD, Massey SR, Chen W, Chen Z, Wang C, Gass JT, Brown RW. Effects of positive mGlu5 modulation on D 2 signaling and nicotine-conditioned place preference: Mechanisms of epigenetic inheritance in a transgenerational model of drug abuse vulnerability in psychosis. J Psychopharmacol 2025; 39:265-281. [PMID: 39462877 PMCID: PMC11845308 DOI: 10.1177/02698811241292902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND The metabotropic glutamate type 5 (mGlu5) receptor has emerged as a potential target for the treatment of psychosis that is suggested to have greater efficacy than antipsychotic medications that are currently utilized. AIMS This study sought to elucidate mechanisms of therapeutic action associated with the modulation of the mGlu5 receptor in a disordered system marked by dopamine dysfunction. We further explored epigenetic mechanisms contributing to heritable transmission of a psychosis-like phenotype in a novel heritable model of drug abuse vulnerability in psychosis. METHODS F1 generation male and female Sprague-Dawley rats that were the offspring of two neonatal quinpirole-treated (QQ) or two saline-treated (SS) animals were tested on nicotine-conditioned place preference (CPP). Regulators of G protein signaling 9 (RGS9) and β-arrestin 2 (βA2), which mediate dopamine (DA) D2 signaling, were measured in the nucleus accumbens shell, prelimbic and infralimbic cortices. Reduced Representation Bisulfite Sequencing (RRBS) was used to analyze the cytosine methylation in these brain regions. RESULTS Pretreatment with the mGlu5-positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) 20 min prior to conditioning trials blocked enhanced nicotine CPP and mitigated aberrant G protein-dependent and -independent signaling in QQ animals. RRBS analysis revealed region-specific changes in several pathways, including nicotine addiction, dopamine synapses, and neural connectivity. CONCLUSIONS These results reveal an important region-specific mechanism of action for CDPPB in a system marked by enhanced DAD2 receptor signaling. Results additionally reveal DNA methylation as an epigenetic mechanism of heritability, further validating the current model as a useful tool for the study of psychosis and comorbid nicotine use.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Liza J Wills
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Cristal D Ahmed
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Samuel R Massey
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Wanqiu Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Justin T Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
2
|
Cuozzo AM, Peeters LD, Ahmed CD, Wills LJ, Gass JT, Brown RW. Investigation of the Roles of the Adenosine A(2A) and Metabotropic Glutamate Receptor Type 5 (mGlu5) Receptors in Prepulse Inhibition and CREB Signaling in a Heritable Rodent Model of Psychosis. Cells 2025; 14:182. [PMID: 39936973 PMCID: PMC11817787 DOI: 10.3390/cells14030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
The metabotropic glutamate receptor type 5 (mGlu5) and adenosine A(2A) receptor form a mutually inhibitory heteromer with the dopamine D2 receptor, where the activation of either mGlu5 or A(2A) leads to reduced D2 signaling. This study investigated whether a mGlu5-positive allosteric modulator (PAM) or an A(2A) agonist treatment could mitigate sensorimotor gating deficits and alter cyclic AMP response element-binding protein (CREB) levels in a rodent neonatal quinpirole (NQ) model of psychosis. F0 Sprague-Dawley rats were treated with neonatal saline or quinpirole (1 mg/kg) from postnatal day 1 to 21 and bred to produce an F1 generation. F1 offspring underwent prepulse inhibition (PPI) testing from postnatal day 44 to 48 to assess sensorimotor gating. The rats were treated with mGlu5 PAM 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) or A(2A) agonist CGS21680. Rats with at least one NQ-treated parent showed PPI deficits, which were alleviated by both CDPPB and CGS21680. Sex differences were noted across groups, with CGS21680 showing greater efficacy than CDPPB. Additionally, CREB levels were elevated in the nucleus accumbens (NAc), and both CDPPB and CGS21680 reduced CREB expression to control levels. These findings suggest that targeting the adenosinergic and glutamatergic systems alleviates sensorimotor gating deficits and abnormal CREB signaling, both of which are associated with psychosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Russell W. Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.C.); (C.D.A.)
| |
Collapse
|
3
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Turney SE, Bullock LP, Price RM, Gass JT, Brown RW. Modulation of mGlu5 reduces rewarding associative properties of nicotine via changes in mesolimbic plasticity: Relevance to comorbid cigarette smoking in psychosis. Pharmacol Biochem Behav 2024; 239:173752. [PMID: 38521210 PMCID: PMC11088493 DOI: 10.1016/j.pbb.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Seth E Turney
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Luke P Bullock
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Robert M Price
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America.
| |
Collapse
|
4
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Brown RW. Reinstatement of nicotine conditioned place preference in a transgenerational model of drug abuse vulnerability in psychosis: Impact of BDNF on the saliency of drug associations. Psychopharmacology (Berl) 2023; 240:1453-1464. [PMID: 37160431 PMCID: PMC10330905 DOI: 10.1007/s00213-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
RATIONALE Psychotic disorders such as schizophrenia are often accompanied by high rates of cigarette smoking, reduced quit success, and high relapse rates, negatively affecting patient outcomes. However, the mechanisms underlying altered relapse-like behaviors in psychosis are poorly understood. OBJECTIVES The present study analyzed changes in extinction and reinstatement of nicotine conditioned place preference (CPP) and resulting changes in brain-derived neurotrophic factor (BDNF) in a novel heritable rodent model of psychosis, demonstrating increased dopamine D2 receptor sensitivity, to explore mechanisms contributing to changes in relapse-like behaviors. METHODS Male and female offspring of two neonatal quinpirole-treated (1 mg/kg quinpirole from postnatal day (P)1-21; QQ) and two neonatal saline-treated (SS) Sprague-Dawley rats (F1 generation) were tested on an extended CPP paradigm to analyze extinction and nicotine-primed reinstatement. Brain tissue was analyzed 60 min after the last nicotine injection for BDNF response in the ventral tegmental area (VTA), the infralimbic (IfL) and prelimbic (PrL) cortices. RESULTS F1 generation QQ offspring demonstrated delayed extinction and more robust reinstatement compared to SS control animals. In addition, QQ animals demonstrated an enhanced BDNF response to nicotine in the VTA, IfL and Prl cortices compared to SS offspring. CONCLUSIONS This study is the first to demonstrate altered relapse-like behavior in a heritable rodent model with relevance to comorbid drug abuse and psychosis. This altered pattern of behavior is hypothesized to be related to elevated activity-dependent BDNF in brain areas associated with drug reinforcement during conditioning that persists through the extinction phase, rendering aberrantly salient drug associations resistant to extinction and enhancing relapse vulnerability.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
5
|
Maurer JJ, Wimmer ME, Turner CA, Herman RJ, Zhang Y, Ragnini K, Ferrante J, Kimmey BA, Crist RC, Christopher Pierce R, Schmidt HD. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry 2022; 27:3864-3874. [PMID: 35595980 PMCID: PMC9675874 DOI: 10.1038/s41380-022-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.
Collapse
Affiliation(s)
- John J Maurer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, 19122, USA
| | - Christopher A Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rae J Herman
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kael Ragnini
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Ferrante
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blake A Kimmey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Brown RW, Varnum CG, Wills LJ, Peeters LD, Gass JT. Modulation of mGlu5 improves sensorimotor gating deficits in rats neonatally treated with quinpirole through changes in dopamine D2 signaling. Pharmacol Biochem Behav 2021; 211:173292. [PMID: 34710401 PMCID: PMC9176413 DOI: 10.1016/j.pbb.2021.173292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022]
Abstract
This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1-21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (βA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased βA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in βA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America.
| | - Christopher G Varnum
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Loren D Peeters
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| |
Collapse
|
7
|
Young AH. Translational psychopharmacology. J Psychopharmacol 2021; 35:1167-1168. [PMID: 34634965 DOI: 10.1177/02698811211053207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), School of Academic Psychiatry, King's College London, London, UK.,Bethlem Royal Hospital, South London and Maudsley NHS Foundation Trust, Beckenham, UK
| |
Collapse
|