1
|
Cousijn J, Toenders YJ, Kaag AM, Filbey F, Kroon E. The role of sex in the association between cannabis use disorder and resting-state functional connectivity. Neuropsychopharmacology 2025; 50:991-999. [PMID: 40102266 PMCID: PMC12032362 DOI: 10.1038/s41386-025-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
While Cannabis use disorder (CUD) is twice as prevalent in males, females transition more quickly from heavy use to CUD and experience more severe withdrawal. These clinically relevant sex differences contrast the lack of knowledge about the underlying brain mechanisms. This study investigated the relationship between CUD and resting-state functional brain connectivity (RSFC), assessing potential sex differences herein. RSFC of the Salience Network (SN), Basal Ganglia Network (BGN), Executive Control Network (ECN), and Default Mode Network (DMN) was compared between 152 individuals (76 males) with CUD and 114 matched controls (47 males). Within the CUD group, relationships between RSFC and heaviness of cannabis use, age of onset, and CUD symptom severity, along with their associations with sex, were investigated. CUD and control groups showed similar RSFC across all networks, regardless of sex. In the CUD group, heavier cannabis use correlated with higher RSFC across all networks and earlier age of onset was related to higher RSFC in the anterior SN, BGN, left ECN, and dorsal DMN. These associations were similar for males and females. CUD severity was related to higher RSFC in the anterior SN, which was moderated by sex, with a positive association seen only in males. In conclusion, CUD may not necessarily be associated with altered RSFC. Individual use characteristics such age of onset and severity of use may determine the potential impact of cannabis use on RSFC in a largely similar way in males and females.
Collapse
Affiliation(s)
- Janna Cousijn
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Yara J Toenders
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anne Marije Kaag
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Francesca Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Emese Kroon
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Byun AJS, Deshpande HU, Stover J, Kangas BD, Kohut SJ. Central Executive Network drives delta-9-tetrahydrocannabinol (THC)-induced nonlinear changes in large-scale functional connectivity in adolescent nonhuman primates. Neuropsychopharmacology 2025:10.1038/s41386-025-02068-5. [PMID: 40016367 DOI: 10.1038/s41386-025-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Adolescent cannabinoid exposure has been implicated in enduring modifications to adult brain circuitry; however, well-controlled, systematic analyses investigating dose-dependent effects of chronic delta-9-tetrahydrocannabinol (THC) exposure on brain connectivity are lacking. It is hypothesized that large-scale intrinsic networks, such as default mode (DMN), central executive (CEN), and salience networks (SN), are critically involved in vulnerability to deficits in cognitive processing often associated with adolescent cannabis use. The present study aimed to elucidate the effects of chronic THC exposure on functional connectivity (FC) of these putative large-scale networks in nonhuman primates. Separate groups of adolescent squirrel monkeys (aged 2.0-yrs [female] and 2.5-yrs [male]) were administered intramuscular injections of vehicle or THC daily (0.32 or 3.2mg/kg) for 6-months during adolescence. Resting state functional connectivity from scans conducted in awake subjects was measured before dosing, at 6-months of chronic dosing, and 60-days following discontinuation of daily THC exposure. Utilizing two distinct analytical methodologies, we observed a non-linear, dosage-dependent alteration in DMN-CEN FC across scan intervals. Specifically, exposure to a low THC dosage increased FC during chronic exposure compared to both the pre-dosing and discontinuation periods. This pattern, however, was not observed in either the vehicle or high THC dosage groups. Dual-regression unveiled a similar non-linear effect within the CEN, but not DMN, suggesting the effect on DMN-CEN FC may be driven by modifications within the CEN. Taken together, these results suggest adolescent THC exposure differentially affects large-scale brain networks and contributes to a nuanced understanding of CEN's role in disrupting brain connectivity following chronic THC exposure.
Collapse
Affiliation(s)
- Andrew Jin Soo Byun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Harshawardhan U Deshpande
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessi Stover
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
| | - Brian D Kangas
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J Kohut
- Behavioral Biology Program, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
3
|
Inman A, Cservenka A. Cannabis flower, concentrates, and edibles: a narrative review comparing prevalence of use, methods of consumption, and cannabis use disorder outcomes. J Addict Dis 2024:1-11. [PMID: 39460749 DOI: 10.1080/10550887.2024.2418225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
BACKGROUND Cannabis use has increased in prevalence over the past several decades, and novel forms of cannabis (e.g., concentrates and edibles) have become readily available. OBJECTIVE The purpose of this narrative review was to compare the prevalence of use, methods of consumption, and risk for cannabis use disorder outcomes across cannabis forms to better understand the diversifying landscape of cannabis products and practices. METHODS The electronic database PubMed was used to find relevant articles with keyword searches related to the prevalence of use, methods of consumption, and risk for cannabis use disorder for three major forms of cannabis (flower, concentrates, and edibles). RESULTS Use of all three major forms is prevalent among many cannabis users, but there are differences in user demographics and methods of consumption. Use of cannabis concentrates may be associated with a greater risk for cannabis use disorder. Given the historical predominance of cannabis flower use, many outcomes have not been compared with concentrates or edibles. Furthermore, form-specific longitudinal data is lacking. CONCLUSIONS Given the more recent emergence of novel cannabis products, comparisons of the long-term outcomes of use for each form are needed to advance the development of more informed harm reduction practices that are common to and specific to each form of cannabis.
Collapse
Affiliation(s)
- Atticus Inman
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Anita Cservenka
- School of Psychological Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
4
|
Ertl N, Freeman TP, Mokrysz C, Ofori S, Borissova A, Petrilli K, Curran HV, Lawn W, Wall MB. Acute effects of different types of cannabis on young adult and adolescent resting-state brain networks. Neuropsychopharmacology 2024; 49:1640-1651. [PMID: 38806583 PMCID: PMC11319659 DOI: 10.1038/s41386-024-01891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Adolescence is a time of rapid neurodevelopment and the endocannabinoid system is particularly prone to change during this time. Cannabis is a commonly used drug with a particularly high prevalence of use among adolescents. The two predominant phytocannabinoids are Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), which affect the endocannabinoid system. It is unknown whether this period of rapid development makes adolescents more or less vulnerable to the effects of cannabis on brain-network connectivity, and whether CBD may attenuate the effects of THC. Using fMRI, we explored the impact of vaporized cannabis (placebo, THC: 8 mg/75 kg, THC + CBD: 8 mg/75 kg THC & 24 mg/75 kg CBD) on resting-state networks in groups of semi-regular cannabis users (usage frequency between 0.5 and 3 days/week), consisting of 22 adolescents (16-17 years) and 24 young adults (26-29 years) matched for cannabis use frequency. Cannabis caused reductions in within-network connectivity in the default mode (F[2,88] = 3.97, P = 0.022, η² = 0.018), executive control (F[2,88] = 18.62, P < 0.001, η² = 0.123), salience (F[2,88] = 12.12, P < 0.001, η² = 0.076), hippocampal (F[2,88] = 14.65, P < 0.001, η² = 0.087), and limbic striatal (F[2,88] = 16.19, P < 0.001, η² = 0.102) networks compared to placebo. Whole-brain analysis showed cannabis significantly disrupted functional connectivity with cortical regions and the executive control, salience, hippocampal, and limbic striatal networks compared to placebo. CBD did not counteract THC's effects and further reduced connectivity both within networks and the whole brain. While age-related differences were observed, there were no interactions between age group and cannabis treatment in any brain network. Overall, these results challenge the assumption that CBD can make cannabis safer, as CBD did not attenuate THC effects (and in some cases potentiated them); furthermore, they show that cannabis causes similar disruption to resting-state connectivity in the adolescent and adult brain.
Collapse
Affiliation(s)
- Natalie Ertl
- Invicro London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Shelan Ofori
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Anna Borissova
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- National Addiction Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Kat Petrilli
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
| | - Will Lawn
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, WC1E 7HB, London, UK
- National Addiction Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Matthew B Wall
- Invicro London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK.
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W12 0NN, London, UK.
| |
Collapse
|
5
|
Schrock JM. Accelerated aging in people living with HIV: The neuroimmune feedback model. Brain Behav Immun Health 2024; 36:100737. [PMID: 38356933 PMCID: PMC10864877 DOI: 10.1016/j.bbih.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
People living with HIV (PLWH) experience earlier onset of aging-related comorbidities compared to their counterparts without HIV. This paper lays out a theoretical model to explain why PLWH experience accelerated aging. Briefly, the model is structured as follows. PLWH experience disproportionately heavy burdens of psychosocial stress across the life course. This psychosocial stress increases risks for depressive symptoms and problematic substance use. Depressive symptoms and problematic substance use interfere with long-term adherence to antiretroviral therapy (ART). Lower ART adherence, in turn, exacerbates the elevated systemic inflammation stemming from HIV infection. This inflammation increases risks for aging-related comorbidities. Systemic inflammation also reduces connectivity in the brain's central executive network (CEN), a large-scale brain network that is critical for coping with stressful circumstances. This reduced capacity for coping with stress leads to further increases in depressive symptoms and problematic substance use. Together, these changes form a neuroimmune feedback loop that amplifies the impact of psychosocial stress on aging-related comorbidities. In this paper, I review the existing evidence relevant to this model and highlight directions for future research.
Collapse
Affiliation(s)
- Joshua M. Schrock
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N. Michigan Avenue, Suite 1400, Chicago, IL, 60611, United states
| |
Collapse
|