1
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
2
|
Yang Y, Zhang Q, Ren J, Zhu Q, Wang L, Zhang Y, Geng Z. Evolution of Brain Morphology in Spontaneously Hypertensive and Wistar-Kyoto Rats From Early Adulthood to Aging: A Longitudinal Magnetic Resonance Imaging Study. Front Aging Neurosci 2021; 13:757808. [PMID: 34916922 PMCID: PMC8670306 DOI: 10.3389/fnagi.2021.757808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
The influence of hypertension and aging alone on brain structure has been described extensively. Our understanding of the interaction of hypertension with aging to brain morphology is still limited. We aimed to detect the synergistic effects of hypertension and aging on brain morphology and to describe the evolution patterns of cerebral atrophy from spatial and temporal perspectives. In 8 spontaneously hypertensive rats (SHRs) and 5 Wistar-Kyoto rats, high-resolution magnetic resonance imaging scans were longitudinally acquired at 10, 24, 52, and 80 weeks. We analyzed the tissue volumes of gray matter, white matter, cerebral spinal fluid, and total intracranial volume (TIV), and then evaluated gray matter volume in detail using voxel-based morphometry (VBM) and region of interest-based methods. There were interactive effects on hypertension and aging in tissue volumes of gray matter, white matter, and TIV, of which gray matter atrophy was most pronounced, especially in elderly SHRs. We identified the vulnerable gray matter volume with combined effects of hypertension and aging in the septal region, bilateral caudate putamen, hippocampus, primary somatosensory cortex, cerebellum, periaqueductal gray, right accumbens nucleus, and thalamus. We automatically extracted the septal region, anterior cingulate cortex, primary somatosensory cortex, caudate putamen, hippocampus, and accumbens nucleus and revealed an inverted-U trajectory of volume change in SHRs, with volume increase at the early phase and decline at the late phase. Hypertension interacts with aging to affect brain volume changes such as severe atrophy in elderly SHRs.
Collapse
Affiliation(s)
- Yingying Yang
- Graduate School, Hebei Medical University, Shijiazhuang, China.,Department of Imaging, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Quan Zhang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Qingfeng Zhu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixin Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongzhi Zhang
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Cui Y, Jin X, Choi JY, Kim BG. Modeling subcortical ischemic white matter injury in rodents: unmet need for a breakthrough in translational research. Neural Regen Res 2021; 16:638-642. [PMID: 33063714 PMCID: PMC8067929 DOI: 10.4103/1673-5374.295313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Subcortical ischemic white matter injury (SIWMI), pathological correlate of white matter hyperintensities or leukoaraiosis on magnetic resonance imaging, is a common cause of cognitive decline in elderly. Despite its high prevalence, it remains unknown how various components of the white matter degenerate in response to chronic ischemia.This incomplete knowledge is in part due to a lack of adequate animal model. The current review introduces various SIWMI animal models and aims to scrutinize their advantages and disadvantages primarily in regard to the pathological manifestations of white matter components. The SIWMI animal models are categorized into 1) chemically induced SIWMI models, 2) vascular occlusive SIWMI models, and 3) SIWMI models with comorbid vascular risk factors. Chemically induced models display consistent lesions in predetermined areas of the white matter, but the abrupt evolution of lesions does not appropriately reflect the progressive pathological processes in human white matter hyperintensities. Vascular occlusive SIWMI models often do not exhibit white matter lesions that are sufficiently unequivocal to be quantified. When combined with comorbid vascular risk factors (specifically hypertension), however, they can produce progressive and definitive white matter lesions including diffuse rarefaction, demyelination, loss of oligodendrocytes, and glial activation, which are by far the closest to those found in human white matter hyperintensities lesions. However, considerable surgical mortality and unpredictable natural deaths during a follow-up period would necessitate further refinements in these models. In the meantime, in vitro SIWMI models that recapitulate myelinated white matter track may be utilized to study molecular mechanisms of the ischemic white matter injury. Appropriate in vivo and in vitro SIWMI models will contribute in a complementary manner to making a breakthrough in developing effective treatment to prevent progression of white matter hyperintensities.
Collapse
Affiliation(s)
- Yuexian Cui
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Neurology, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xuelian Jin
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Nephrology, Suqian First Hospital, Suqian, Jiangsu Province, China
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine; Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine; Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
4
|
Zhao Q, Yan T, Chopp M, Venkat P, Chen J. Brain-kidney interaction: Renal dysfunction following ischemic stroke. J Cereb Blood Flow Metab 2020; 40:246-262. [PMID: 31766979 PMCID: PMC7370616 DOI: 10.1177/0271678x19890931] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke is a leading cause of mortality and morbidity, with long-term debilitating effects. Accumulating evidence from experimental studies as well as observational studies in patients suggests a cross talk between the brain and kidney after stroke. Stroke may lead to kidney dysfunction which can adversely impact patient outcome. In this review article, we discuss the epidemiology and mechanisms of brain–kidney interaction following ischemic stroke. Specifically, we discuss the role of the central autonomic network, autoregulation, inflammatory and immune responses, the role of extracellular vesicles and their cargo microRNA, in mediating brain–kidney interaction following stroke. Understanding the bidirectional nature of interaction between the brain and kidney after cerebral injury would have clinical implications for the treatment of stroke and overall patient outcome.
Collapse
Affiliation(s)
- Qiang Zhao
- Tianjin Neurological Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Yan
- Tianjin Neurological Institute, Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
5
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
6
|
Opportunities and Limitations of Vascular Risk Factor Models in Studying Plasticity-Promoting and Restorative Ischemic Stroke Therapies. Neural Plast 2019; 2019:9785476. [PMID: 31827502 PMCID: PMC6885287 DOI: 10.1155/2019/9785476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
Major efforts are currently made promoting neuronal plasticity and brain remodeling in the postacute stroke phase. Experimental studies evaluating new stroke therapies are mostly performed in rodents, which compared to humans exhibit a short lifespan. These studies widely employ young, otherwise healthy, rodents that lack the vascular risk factors and comorbidities of stroke patients. These risk factors compromise postischemic neurological recovery and brain plasticity and in several contexts reduce the brain responsiveness to recovery-inducing plasticity-promoting treatments. By examining risk factor models, which have hitherto been used for studying experimentally induced ischemic stroke, this review outlines the possibilities and limitations of risk factor models in the evaluation of plasticity-promoting and restorative stroke treatments.
Collapse
|
7
|
Diekhorst L, Gómez-de Frutos MC, Laso-García F, Otero-Ortega L, Fuentes B, Jolkkonen J, Detante O, Moisan A, Leyva L, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M. Mesenchymal Stem Cells From Adipose Tissue Do not Improve Functional Recovery After Ischemic Stroke in Hypertensive Rats. Stroke 2019; 51:342-346. [PMID: 31694504 DOI: 10.1161/strokeaha.119.027133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Hypertension is the most frequent comorbidity in stroke.The purpose of this study was to evaluate whether hypertension alters the response to treatment with adipose tissue-derived mesenchymal stem cells (ADMSCs) after an ischemic stroke in rats. Methods- Ischemic stroke was induced in male normotensive or hypertensive rats. Either vehicle or 1×106 ADMSC was intravenously administered at 48 hours poststroke. Functional outcome, lesion size and volume, and markers of brain repair (GFAP [glial fibrillary acidic protein], doublecortin, CD-31, α-smooth muscle actin) were evaluated. Results- Hypertensive rats had larger lesions, higher apparent diffusion coefficients (ADC) and worse functional outcomes than normotensive rats. Hypertension increased GFAP and vascular markers (CD-31 and α-smooth muscle actin). The hypertensive rats treated with ADMSC did not show any significant improvement in functional recovery, lesion size, ADC values, or histological markers compared with those which received the vehicle. Conclusions- ADMSC did not reverse the hypertension-induced increase in lesion severity or functional impairment. Gliosis, neurogenesis, or vascular markers were not affected by ADMSC in hypertensive rats. Hypertension has a negative impact on the therapeutic effect of ADMSC after an ischemic stroke.
Collapse
Affiliation(s)
- Luke Diekhorst
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Mari Carmen Gómez-de Frutos
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Fernando Laso-García
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Laura Otero-Ortega
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Blanca Fuentes
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio University Hospital (J.J.)
| | - Olivier Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, France (O.D.).,Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, France (O.D., A.M.)
| | - Anaick Moisan
- Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, France (O.D., A.M.).,Cell Therapy and Engineering Unit, EFS Auvergne Rhône Alpes, Saint-Ismier, France (A.M.)
| | - Laura Leyva
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, Spain (L.L.)
| | - Arturo Martínez-Arroyo
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Exuperio Díez-Tejedor
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - María Gutiérrez-Fernández
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | | |
Collapse
|
8
|
Hermann DM, Kleinschnitz C. Modeling Vascular Risk Factors for the Development of Ischemic Stroke Therapies. Stroke 2019; 50:1310-1317. [DOI: 10.1161/strokeaha.118.024673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dirk M. Hermann
- From the Department of Neurology, University Hospital Essen, Germany
| | | |
Collapse
|
9
|
Hermann DM, Popa-Wagner A, Kleinschnitz C, Doeppner TR. Animal models of ischemic stroke and their impact on drug discovery. Expert Opin Drug Discov 2019; 14:315-326. [DOI: 10.1080/17460441.2019.1573984] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|