1
|
Ma C, Liu A, Liu J, Wang X, Cong F, Li Y, Liu J. A window into the brain: multimodal MRI assessment of vascular cognitive impairment. Front Neurosci 2025; 19:1526897. [PMID: 40309660 PMCID: PMC12040843 DOI: 10.3389/fnins.2025.1526897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a diverse range of syndromes, including mild cognitive impairment and vascular dementia (VaD), primarily attributed to cerebrovascular lesions and vascular risk factors. Its prevalence ranks second only to Alzheimer's disease (AD) in neuro diseases. The advancement of medical imaging technology, particularly magnetic resonance imaging (MRI), has enabled the early detection of structural, functional, metabolic, and cerebral connectivity alterations in individuals with VCI. This paper examines the utility of multimodal MRI in evaluating structural changes in the cerebral cortex, integrity of white matter fiber tracts, alterations in the blood-brain barrier (BBB) and glymphatic system (GS) activity, alteration of neurovascular coupling function, assessment of brain connectivity, and assessment of metabolic changes in patients with VCI.
Collapse
Affiliation(s)
- Changjun Ma
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahui Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Xiulin Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| |
Collapse
|
2
|
Sassani M, Ghafari T, Arachchige PRW, Idrees I, Gao Y, Waitt A, Weaver SRC, Mazaheri A, Lyons HS, Grech O, Thaller M, Witton C, Bagshaw AP, Wilson M, Park H, Brookes M, Novak J, Mollan SP, Hill LJ, Lucas SJE, Mitchell JL, Sinclair AJ, Mullinger K, Fernández-Espejo D. Current and prospective roles of magnetic resonance imaging in mild traumatic brain injury. Brain Commun 2025; 7:fcaf120. [PMID: 40241788 PMCID: PMC12001801 DOI: 10.1093/braincomms/fcaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is unmet clinical need for biomarkers to predict recovery or the development of long-term sequelae of mild traumatic brain injury, a highly prevalent condition causing a constellation of disabling symptoms. A substantial proportion of patients live with long-lasting sequelae affecting their quality of life and ability to work. At present, symptoms can be assessed through clinical tests; however, there are no imaging or laboratory tests fully reflective of pathophysiology routinely used by clinicians to characterize post-concussive symptoms. Magnetic resonance imaging has potential to link subtle pathophysiological alterations to clinical outcomes. Here, we review the state of the art of MRI research in adults with mild traumatic brain injury and provide recommendations to facilitate transition into clinical practice. Studies utilizing MRI can inform on pathophysiology of mild traumatic brain injury. They suggest presence of early cytotoxic and vasogenic oedema. They also show that mild traumatic brain injury results in cellular injury and microbleeds affecting the integrity of myelin and white matter tracts, all processes that appear to induce delayed vascular reactions and functional changes. Crucially, correlates between MRI parameters and post-concussive symptoms are emerging. Clinical sequences such as T1-weighted MRI, susceptibility-weighted MRI or fluid attenuation inversion recovery could be easily implementable in clinical practice, but are not sufficient, in isolation for prognostication. Diffusion sequences have shown promises and, although in need of analysis standardization, are a research priority. Lastly, arterial spin labelling is emerging as a high-utility research as it could become useful to assess delayed neurovascular response and possible long-term symptoms.
Collapse
Affiliation(s)
- Matilde Sassani
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Tara Ghafari
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Pradeepa R W Arachchige
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Iman Idrees
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Yidian Gao
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Waitt
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Samuel R C Weaver
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Mazaheri
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah S Lyons
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Olivia Grech
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Mark Thaller
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Caroline Witton
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hyojin Park
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jan Novak
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Susan P Mollan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust Birmingham, Birmingham B15 2WB, UK
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Karen Mullinger
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Thorsen TM, Bøgh N, Bertelsen LB, Hansen ESS, Laustsen C. Multinuclear MRI Can Depict Metabolic and Energetic Changes in Mild Traumatic Brain Injury. NMR IN BIOMEDICINE 2025; 38:e5306. [PMID: 39676068 DOI: 10.1002/nbm.5306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Mild traumatic brain injuries (TBIs) are frequent in the European population. The pathophysiological changes after TBI include metabolic changes, but these are not observable using current clinical tools. We aimed to evaluate multinuclear MRI as a mean of assessing these changes. In our model, pigs were exposed to a controlled cortical impact (CCI) directly on the dura and scanned at 2 h and 2 days after injury. A multinuclear MRI protocol was used. It included hyperpolarized [1-13C]pyruvate MRI, which allows depiction of hyperpolarized carbon-13, through its metabolism from pyruvate to lactate or bicarbonate. At Day 2, cerebral microdialysis were performed, and tissue was obtained for analyses. At Day 0, the cerebral blood flow was reduced in the affected hemisphere (TBI: 31.7 mL/100 mL/min, contralateral: 35.6 mL/100 mL/min, p = 0.1227), and the impacted area showed reduced oxygenation (R2*, TBI: 33.11 s-1, contralateral: 22.20 s-1, p = 0.035). At both days, the lactate-to-pyruvate ratios (hyperpolarized [1-13C]pyruvate) were increased (Day 0: p = 0.023, Day 2: p = 0.022). However, this study can only evaluate the total injury and, thus, cannot differentiate effects from craniotomy and CCI. This metabolic difference was not found using cerebral microdialysis nor a lactate dehydrogenase (LDH) activity assay. The metabolic changes depicted in this study contributes to our understanding of mild TBI; however, the clinical potential of multinuclear MRI is yet to be determined.
Collapse
Affiliation(s)
- Thomas M Thorsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte B Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Kong L, Qiu S, Chen Y, He Z, Huang P, He Q, Zhang RY, Feng XQ, Deng L, Li Y, Yan F, Yang GZ, Feng Y. Assessment of vibration modulated regional cerebral blood flow with MRI. Neuroimage 2023; 269:119934. [PMID: 36754123 DOI: 10.1016/j.neuroimage.2023.119934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Human brain experiences vibration of certain magnitude and frequency during various physical activities such as vehicle transportation and machine operation, which may cause traumatic brain injury or other brain diseases. However, the mechanisms of brain pathogenesis due to vibration are not fully elucidated due to the lack of techniques to study brain functions while applying vibration to the brain at a specific magnitude and frequency. Here, this study reported a custom-built head-worn electromagnetic actuator that applied vibration to the brain in vivo at an accurate frequency inside a magnetic resonance imaging scanner while cerebral blood flow (CBF) was acquired. Using this technique, CBF values from 45 healthy volunteers were quantitatively measured immediately following vibration at 20, 30, 40 Hz, respectively. Results showed increasingly reduced CBF with increasing frequency at multiple regions of the brain, while the size of the regions expanded. Importantly, the vibration-induced CBF reduction regions largely fell inside the brain's default mode network (DMN), with about 58 or 46% overlap at 30 or 40 Hz, respectively. These findings demonstrate that vibration as a mechanical stimulus can change strain conditions, which may induce CBF reduction in the brain with regional differences in a frequency-dependent manner. Furthermore, the overlap between vibration-induced CBF reduction regions and DMN suggested a potential relationship between external mechanical stimuli and cognitive functions.
Collapse
Affiliation(s)
- Linghan Kong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Suhao Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Zhao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Qiang He
- Shanghai United Imaging Healthcare Co Ltd, Shanghai, China
| | - Ru-Yuan Zhang
- Institute of Psychology and Behavioral Science, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center Shanghai, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai, China
| | - Guang-Zhong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
6
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
7
|
Venturini S, Bhatti F, Timofeev I, Carpenter KLH, Hutchinson PJ, Guilfoyle MR, Helmy A. Microdialysis-Based Classifications of Abnormal Metabolic States after Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:195-209. [PMID: 36112699 DOI: 10.1089/neu.2021.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. CMD-based abnormal metabolic states can be described following TBI, informing the etiology of physiological derangements. This systematic review summarizes the published literature on microdialysis-based abnormal metabolic classifications following TBI. Original research studies in which the populations were patients with TBI were included. Studies that described CMD-based classifications of metabolic abnormalities were included in the synthesis of the narrative results. A total of 825 studies underwent two-step screening after duplicates were removed. Fifty-three articles that used CMD in TBI patients were included. Of these, 14 described abnormal metabolic states based on CMD parameters. Classifications were heterogeneous between studies. LPR was the most frequently used parameter in the classifications; high LPR values were described as metabolic crisis. Ischemia was consistently defined as high LPR with low CMD substrate levels (glucose or pyruvate). Mitochondrial dysfunction, describing inability to use energy substrate despite availability, was identified based on raised LPR with near-normal levels of pyruvate. This is the first systematic review summarizing the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists among individual classifications, there is broad agreement about broad definitions of metabolic crisis, ischemia, and mitochondrial dysfunction. Identifying the etiology of deranged cerebral metabolism after TBI is important for targeting therapeutic interventions.
Collapse
Affiliation(s)
- Sara Venturini
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Vedung F, Fahlström M, Wall A, Antoni G, Lubberink M, Johansson J, Tegner Y, Stenson S, Haller S, Weis J, Larsson EM, Marklund N. Chronic cerebral blood flow alterations in traumatic brain injury and sports-related concussions. Brain Inj 2022; 36:948-960. [PMID: 35950271 DOI: 10.1080/02699052.2022.2109746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PRIMARY OBJECTIVE Traumatic brain injury (TBI) and sports-related concussion (SRC) may result in chronic functional and neuroanatomical changes. We tested the hypothesis that neuroimaging findings (cerebral blood flow (CBF), cortical thickness, and 1H-magnetic resonance (MR) spectroscopy (MRS)) were associated to cognitive function, TBI severity, and sex. RESEARCH DESIGN Eleven controls, 12 athletes symptomatic following ≥3SRCs and 6 patients with moderate-severe TBI underwent MR scanning for evaluation of cortical thickness, brain metabolites (MRS), and CBF using pseudo-continuous arterial spin labeling (ASL). Cognitive screening was performed using the RBANS cognitive test battery. MAIN OUTCOMES AND RESULTS RBANS-index was impaired in both injury groups and correlated with the injury severity, although not with any neuroimaging parameter. Cortical thickness correlated with injury severity (p = 0.02), while neuronal density, using the MRS marker ((NAA+NAAG)/Cr, did not. On multivariate analysis, injury severity (p = 0.0003) and sex (p = 0.002) were associated with CBF. Patients with TBI had decreased gray (p = 0.02) and white matter (p = 0.02) CBF compared to controls. CBF was significantly lower in total gray, white matter and in 16 of the 20 gray matter brain regions in female but not male athletes when compared to female and male controls, respectively. CONCLUSIONS Injury severity correlated with CBF, cognitive function, and cortical thickness. CBF also correlated with sex and was reduced in female, not male, athletes. Chronic CBF changes may contribute to the persistent injury mechanisms in TBI and rSRC.
Collapse
Affiliation(s)
- Fredrik Vedung
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Wall
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jakob Johansson
- Department of Surgical Sciences, Anesthesiology, Uppsala University, Uppsala, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Uppsala, Sweden
| | - Staffan Stenson
- Department of Neuroscience, Rehabilitation Medicine, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Affidea CDRC Centre de Diagnostic Radiologique de Carouge SA, Geneva, Switzerland
| | - Jan Weis
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
10
|
Treichl SA, Ho WM, Steiger R, Grams AE, Rietzler A, Luger M, Gizewski ER, Thomé C, Petr O. Cerebral Energy Status and Altered Metabolism in Early Brain Injury After Aneurysmal Subarachnoid Hemorrhage: A Prospective 31P-MRS Pilot Study. Front Neurol 2022; 13:831537. [PMID: 35295831 PMCID: PMC8919991 DOI: 10.3389/fneur.2022.831537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acute changes of cerebral energy metabolism in early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) may play a crucial role for overall neurological outcome. However, direct detection of these alterations is limited. Phosphorous magnetic resonance spectroscopy (31P-MRS) is a molecular-based advanced neuroimaging technique allowing measurements of pathophysiological processes and tissue metabolism based on various phosphorous compound metabolites. This method may provide objective assessment of both primary and secondary changes. Objective The aim of this pilot study was to evaluate the feasibility and the diagnostic potential of early 31P-MRS in aSAH. Methods Patients with aSAH treated for ruptured aneurysms between July 2016 and October 2017 were prospectively included in the study. 3-Tesla-MRI including 31P-MRS was performed within the first 72 h after hemorrhage. Data of the vascular territories of the anterior, middle, and posterior cerebral arteries (ACA, MCA, PCA) and the basal ganglia were separately analyzed and compared with data of a healthy age- and sex-matched control group. Phosphorous compound metabolites were quantified, and ratios of these metabolites were further evaluated. Influence of treatment modality, clinical conditions, and analgosedation were analyzed. Results Data of 13 patients were analyzed. 31P-MRS showed significant changes in cerebral energy metabolism after aSAH in all cerebrovascular territories. Both PCr/ATP and PCr/Pi ratio were notably increased (P < 0.001). Also, Pi/ATP was significantly decreased in all cerebrovascular territories (P = 0.014). PME/PDE ratio was overall significant decreased (P < 0.001). Conclusion 31P-MRS is a promising non-invasive imaging tool for the assessment of changes in energy metabolism after aSAH. It allows a detailed insight into EBI and seems to harbor a high potential for clinical practice.
Collapse
Affiliation(s)
| | - Wing Mann Ho
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Ruth Steiger
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Rietzler
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Luger
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Hermanides J, Hong YT, Trivedi M, Outtrim J, Aigbirhio F, Nestor PJ, Guilfoyle M, Winzeck S, Newcombe VFJ, Das T, Correia MM, Carpenter KLH, Hutchinson PJA, Gupta AK, Fryer TD, Pickard JD, Menon DK, Coles JP. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021; 144:3492-3504. [PMID: 34240124 PMCID: PMC8677561 DOI: 10.1093/brain/awab255] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.
Collapse
Affiliation(s)
- Jeroen Hermanides
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Monica Trivedi
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Joanne Outtrim
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Matthew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Winzeck
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
- BioMedIA Group, Department of Computing, Imperial College, London, UK
| | | | - Tilak Das
- Department of Radiology, Addenbrooke’s Hospital, Cambridge, UK
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Arun K Gupta
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Jonathan P Coles
- University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GA. Urinary metabolomic signatures as indicators of injury severity following traumatic brain injury: A pilot study. IBRO Neurosci Rep 2021; 11:200-206. [PMID: 34786572 PMCID: PMC8578034 DOI: 10.1016/j.ibneur.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Analysis of fluid metabolites has the potential to provide insight into the neuropathophysiology of injury in patients with traumatic brain injury (TBI). OBJECTIVE Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this study determined (1) if urinary metabolites change during recovery in patients with mild to severe TBI; (2) whether changes in urinary metabolites correlate to injury severity; (3) whether biological pathway analysis reflects mechanisms that mediate neural damage/repair throughout TBI recovery. METHODS Urine samples were collected within 7 days and at 6-months post-injury in male participants (n = 8) with mild-severe TBI. Samples were analyzed with NMR-based quantitative spectroscopy for metabolomic profiles and analyzed with multivariate statistical and machine learning-based analyses. RESULTS Lower levels of homovanillate (R = -0.74, p ≤ 0.001), L-methionine (R = -0.78, p < 0.001), and thymine (R = -0.85, p < 0.001) negatively correlated to injury severity. Pathway analysis revealed purine metabolism to be a primary pathway (p < 0.01) impacted by TBI. CONCLUSION This study provides pilot data to support the use of urinary metabolites in clinical practice to better interpret biochemical changes underlying TBI severity and recovery. The discovery of urinary metabolites as biomarkers may assist in objective and rapid identification of TBI severity and prognosis. Thus, 1H NMR metabolomics has the potential to facilitate the adaptation of treatment programs that are personalized to the patient's needs.
Collapse
Affiliation(s)
- Elani A. Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jamie N. Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
13
|
DeVience SJ, Walsworth RL, Rosen MS. NMR of 31P nuclear spin singlet states in organic diphosphates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107101. [PMID: 34781233 DOI: 10.1016/j.jmr.2021.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
31P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled 31P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that 31P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T1 and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the 31P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA.
| | - Ronald L Walsworth
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA.
| | - Matthew S Rosen
- Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Engineering, Massachusetts General Hospital, 149(th) Thirteenth St., Charlestown, MA 02129, USA.
| |
Collapse
|
14
|
Pinggera D, Steiger R, Bauer M, Kerschbaumer J, Beer R, Ritzler A, Grams AE, Gizewski ER, Thomé C, Petr O. Repeated 31P-MRS in severe traumatic brain injury: Insights into cerebral energy status and altered metabolism. J Neurotrauma 2021; 38:2822-2830. [PMID: 34235953 DOI: 10.1089/neu.2021.0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphorous magnetic resonance spectroscopy (31P-MRS) is suited to non-invasively investigate energy metabolism and to detect molecules containing phosphorus in the human brain. The aim of this longitudinal study was to perform 31P-MRS at two different time points (within 72 hours and between day 10-14) after severe traumatic brain injury (sTBI) to reveal alterations in cerebral energy metabolism. Twenty-six ventilated sTBI patients, aged between 20 to 75 years, with a median initial GCS of 5 were prospectively analyzed. 31P-MRS data of the structurally more affected side were compared to data from contralateral normal appearing areas and to data of age- and gender-matched healthy controls. There were no significant intraindividual differences between the lesioned and the less affected side at either of time points. In the acute phase, PCr/ATP and PCr/Pi were significantly elevated whereas PME/PDE and Pi/ATP were significantly decreased in contrast to healthy controls. In the subacute phase these differences gradually dissipated, remaining lower Pi/ATP ratio, and only partly altered levels of PCr/Pi and PME/PDE. Our data affirm that cerebral metabolism is globally altered after sTBI, demonstrating the diffuse impairment of brain bioenergetics at multiple levels, with resultant developments in terms of time.
Collapse
Affiliation(s)
- Daniel Pinggera
- Medical University Innsbruck, Department of Neurosurgery, Anichstraße 35, 6020 Innsbruck, Innsbruck, Austria, 6020;
| | - Ruth Steiger
- Medical University Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria.,Medical University Innsbruck, Department of Neuroradiology, Innsbruck, Austria;
| | - Marlies Bauer
- Medizinische Universität Innsbruck, Neurosurgery, Anichstrass 35, Innsbruck, Austria, 6020;
| | | | - Ronny Beer
- Medical University Innsbruck, Department of Neurology, Innsbruck, Austria;
| | - Andreas Ritzler
- Medical University Innsbruck, Department of Neuroradiology, Innsbruck, Austria.,Medical University Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria;
| | - Astrid Ellen Grams
- Medical University Innsbruck, Department of Neuroradiology, Innsbruck, Austria.,Medical University Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria;
| | - Elke R Gizewski
- Medical University Innsbruck, Department of Neuroradiology, Innsbruck, Austria.,Medical University Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria;
| | - Claudius Thomé
- Medical University Innsbruck, Dept. of Neurosurgery, Anichstr. 35, Innsbruck, Austria, 6020;
| | - Ondra Petr
- Medical University Innsbruck, Department of Neurosurgery, Anichstrasse 35, Innsbruck, Innsbruck, Austria, 6020;
| |
Collapse
|
15
|
Emerging Utility of Applied Magnetic Resonance Imaging in the Management of Traumatic Brain Injury. Med Sci (Basel) 2021; 9:medsci9010010. [PMID: 33673012 PMCID: PMC7930990 DOI: 10.3390/medsci9010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a widespread and expensive problem globally. The standard diagnostic workup for new TBI includes obtaining a noncontrast computed tomography image of the head, which provides quick information on operative pathologies. However, given the limited sensitivity of computed tomography for identifying subtle but meaningful changes in the brain, magnetic resonance imaging (MRI) has shown better utility for ongoing management and prognostication after TBI. In recent years, advanced applications of MRI have been further studied and are being implemented as clinical tools to help guide care. These include functional MRI, diffusion tensor imaging, MR perfusion, and MR spectroscopy. In this review, we discuss the scientific basis of each of the above techniques, the literature supporting their use in TBI, and how they may be clinically implemented to improve the care of TBI patients.
Collapse
|