1
|
van der Plas MC, Koemans EA, Schipper MR, Voigt S, Rasing I, van der Zwet RGJ, Kaushik K, van Dort R, Schriemer S, van Harten TW, van Zwet E, van Etten ES, van Osch MJP, Terwindt GM, van Walderveen M, Wermer MJH. One-Year Radiologic Progression in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Neurology 2025; 104:e213546. [PMID: 40198864 PMCID: PMC11995281 DOI: 10.1212/wnl.0000000000213546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Knowledge on the short-term progression of cerebral amyloid angiopathy (CAA) is important for clinical practice and the design of clinical treatment trials. We investigated the 1-year progression of CAA-related MRI markers in sporadic (sCAA) and Dutch-type hereditary (D-CAA). METHODS Participants were included from 2 prospective cohort studies. 3T-MRI was performed at baseline and after 1 year. We assessed macrobleeds, cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), convexity subarachnoid hemorrhages (cSAHs), white matter hyperintensities (WMH), enlarged centrum semiovale perivascular spaces (CSO-EPVS), and visually stimulated blood oxygenation level-dependent (BOLD) fMRI parameters. Progression was defined as increase in number of macrobleeds or CMBs, new focus or extension of cSS, increase in CSO-EPVS category, or volume increase of >10% of WMH. Multivariable regression analyses were performed to determine factors associated with progression and the association between events related to parenchymal injury (cSAH, macrobleeds) and radiologic progression. RESULTS We included 98 participants (47% women): 55 with sCAA (mean age 70 years), 28 with symptomatic D-CAA (mean age 59 years), and 15 with presymptomatic D-CAA (mean age 45 years). Progression of >1 MRI markers was seen in all 83 (100%) participants with sCAA and symptomatic D-CAA and in 9 (60%) with presymptomatic D-CAA. The number of CMBs showed the largest progression in sCAA (98%; median increase 24) and symptomatic D-CAA (100%; median increase 58). WMH volume (>10% increase in 70%; mean increase 1.2 mL) was most progressive in presymptomatic D-CAA. A decrease in the upslope of the visually evoked BOLD response was observed for most patients. Symptomatic D-CAA status was associated with more overall progression (adjusted odds ratio [aOR] 9.7; 95% CI 1.7-54.2), CMB (adjusted relative risk [aRR] 2.47; 95% CI 1.5-4.1), and WMH volume progression (β 2.52; 95% CI 0.3-4.8). Baseline CMB count (aRR 1.002; 95% CI 1.001-1.002) was associated with CMB progression and cSS presence at baseline (aOR 8.16; 95% CI 2.6-25.4) with cSS progression. cSS progression was also associated with cSAH and macrobleeds (aOR 21,029; 95% CI 2.042-216.537). DISCUSSION CAA is a radiologically progressive disease even in the short-term. After 1 year, all symptomatic and most of the presymptomatic participants showed progression of at least 1 MRI-marker. CMBs and WMH volume (in symptomatic CAA) and WMH volume (in presymptomatic CAA) are the most promising markers to track short-term progression in future trials.
Collapse
Affiliation(s)
| | - Emma A Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Manon R Schipper
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Rosemarie van Dort
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sanne Schriemer
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Thijs W van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Erik van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands; and
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Weidauer S, Hattingen E. Cerebral Amyloid Angiopathy: Clinical Presentation, Sequelae and Neuroimaging Features-An Update. Biomedicines 2025; 13:603. [PMID: 40149580 PMCID: PMC11939913 DOI: 10.3390/biomedicines13030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The prevalence of cerebral amyloid angiopathy (CAA) has been shown to increase with age, with rates reported to be around 50-60% in individuals over 80 years old who have cognitive impairment. The disease often presents as spontaneous lobar intracerebral hemorrhage (ICH), which carries a high risk of recurrence, along with transient focal neurologic episodes (TFNE) and progressive cognitive decline, potentially leading to Alzheimer's disease (AD). In addition to ICH, neuroradiologic findings of CAA include cortical and subcortical microbleeds (MB), cortical subarachnoid hemorrhage (cSAH) and cortical superficial siderosis (cSS). Non-hemorrhagic pathologies include dilated perivascular spaces in the centrum semiovale and multiple hyperintense lesions on T2-weighted magnetic resonance imaging (MRI). A definitive diagnosis of CAA still requires histological confirmation. The Boston criteria allow for the diagnosis of a probable or possible CAA by considering specific neurological and MRI findings. The recent version, 2.0, which includes additional non-hemorrhagic MRI findings, increases sensitivity while maintaining the same specificity. The characteristic MRI findings of autoantibody-related CAA-related inflammation (CAA-ri) are similar to the so-called "amyloid related imaging abnormalities" (ARIA) observed with amyloid antibody therapies, presenting in two variants: (a) vasogenic edema and leptomeningeal effusions (ARIA-E) and (b) hemorrhagic lesions (ARIA-H). Clinical and MRI findings enable the diagnosis of a probable or possible CAA-ri, with biopsy remaining the gold standard for confirmation. In contrast to spontaneous CAA-ri, only about 20% of patients treated with monoclonal antibodies who show proven ARIA on MRI also experience clinical symptoms, including headache, confusion, other psychopathological abnormalities, visual disturbances, nausea and vomiting. Recent findings indicate that treatment should be continued in cases of mild ARIA, with ongoing MRI and clinical monitoring. This review offers a concise update on CAA and its associated consequences.
Collapse
Affiliation(s)
- Stefan Weidauer
- Institute of Neuroradiology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
3
|
Koemans EA, Rasing I, Voigt S, van Harten TW, van der Zwet RG, Kaushik K, Schipper MR, van der Weerd N, van Zwet EW, van Etten ES, van Osch MJ, Kuiperij B, Verbeek MM, Terwindt GM, Greenberg SM, van Walderveen MA, Wermer MJ. Temporal Ordering of Biomarkers in Dutch-Type Hereditary Cerebral Amyloid Angiopathy. Stroke 2024; 55:954-962. [PMID: 38445479 PMCID: PMC10962436 DOI: 10.1161/strokeaha.123.044688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND The temporal ordering of biomarkers for cerebral amyloid angiopathy (CAA) is important for their use in trials and for the understanding of the pathological cascade of CAA. We investigated the presence and abnormality of the most common biomarkers in the largest (pre)symptomatic Dutch-type hereditary CAA (D-CAA) cohort to date. METHODS We included cross-sectional data from participants with (pre)symptomatic D-CAA and controls without CAA. We investigated CAA-related cerebral small vessel disease markers on 3T-MRI, cerebrovascular reactivity with functional 7T-MRI (fMRI) and amyloid-β40 and amyloid-β42 levels in cerebrospinal fluid. We calculated frequencies and plotted biomarker abnormality according to age to form scatterplots. RESULTS We included 68 participants with D-CAA (59% presymptomatic, mean age, 50 [range, 26-75] years; 53% women), 53 controls (mean age, 51 years; 42% women) for cerebrospinal fluid analysis and 36 controls (mean age, 53 years; 100% women) for fMRI analysis. Decreased cerebrospinal fluid amyloid-β40 and amyloid-β42 levels were the earliest biomarkers present: all D-CAA participants had lower levels of amyloid-β40 and amyloid-β42 compared with controls (youngest participant 30 years). Markers of nonhemorrhagic injury (>20 enlarged perivascular spaces in the centrum semiovale and white matter hyperintensities Fazekas score, ≥2, present in 83% [n=54]) and markers of impaired cerebrovascular reactivity (abnormal BOLD amplitude, time to peak and time to baseline, present in 56% [n=38]) were present from the age of 30 years. Finally, markers of hemorrhagic injury were present in 64% (n=41) and only appeared after the age of 41 years (first microbleeds and macrobleeds followed by cortical superficial siderosis). CONCLUSIONS Our results suggest that amyloid biomarkers in cerebrospinal fluid are the first to become abnormal in CAA, followed by MRI biomarkers for cerebrovascular reactivity and nonhemorrhagic injury and lastly hemorrhagic injury. This temporal ordering probably reflects the pathological stages of CAA and should be taken into account when future therapeutic trials targeting specific stages are designed.
Collapse
Affiliation(s)
- Emma A. Koemans
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Ingeborg Rasing
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Thijs W. van Harten
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Reinier G.J. van der Zwet
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Manon R. Schipper
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Nelleke van der Weerd
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Erik W. van Zwet
- Biostatistics (E.W.v.Z.), Leiden University Medical Center, the Netherlands
| | - Ellis S. van Etten
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Matthias J.P. van Osch
- Radiology (S.V., T.W.v.H., M.R.S., M.J.v.P.O., M.A.A.v.W.), Leiden University Medical Center, the Netherlands
| | - Bea Kuiperij
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Marcel M. Verbeek
- Department Neurology and Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen (B.K., M.M.V.)
| | - Gisela M. Terwindt
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
| | - Steven M. Greenberg
- J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (S.M.G.)
| | | | - Marieke J.H. Wermer
- Departments of Neurology (E.A.K., I.R., S.V., R.G.J.v.d.Z., K.K., N.v.d.W., E.S.v.E., G.M.T., M.J.H.W.), Leiden University Medical Center, the Netherlands
- Department of Neurology, University Medical Center Groningen, the Netherlands (M.J.H.W.)
| |
Collapse
|