1
|
Chen F, Wang XM, Huang X. Abnormal topological organization of functional brain networks in the patients with anterior segment ischemic optic neuropathy. Front Neurosci 2024; 18:1458897. [PMID: 39649661 PMCID: PMC11621095 DOI: 10.3389/fnins.2024.1458897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Objective An increasing amount of neuroimaging evidence indicates that patients with anterior segment ischemic optic neuropathy (AION) exhibit abnormal brain function and structural architecture. Some studies have shown that there are abnormal functional and structural changes in the brain visual area of AION patients. Nevertheless, the alterations in the topological properties of brain functional connectivity among patients with AION remain unclear. This study aimed to investigate the topological organization of brain functional connectivity in a group of AION patients using graph theory methods. Methods Resting-state magnetic resonance imaging was conducted on 30 AION patients and 24 healthy controls (HCs) matched for age, gender, and education level. For each participant, a high-resolution brain functional network was constructed using time series correlation and quantified through graph theory analysis. Results Both the AION and HC groups presented high-efficiency small-world networks in their brain functional networks. In comparison to the HCs, the AION group exhibited notable reductions in clustering coefficient (Cp) and local efficiency (Eloc). Specifically, significant decreases in Nodal local efficiency were observed in the right Amygdala of the AION group. Moreover, the NBS method detected a significantly modified network (15 nodes, 15 connections) in the AION group compared to the HCs (p < 0.05). Conclusion Patients with AION exhibited topological abnormalities in the human brain connectivity group. Particularly, there was a decrease in Cp and Eloc in the AION group compared to the HC group. The anomalous node centers and functional connections in AION patients were predominantly situated in the prefrontal lobe, temporal lobe, and parietal lobe. These discoveries offer valuable perspectives into the neural mechanisms associated with visual loss, disrupted emotion regulation, and cognitive impairments in individuals with AION.
Collapse
Affiliation(s)
- Fei Chen
- Department of Opthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Miao Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Zhang H, Yang B, Li Q, Liu L, Fei N, Xian J. Abnormal dynamic features of spontaneous brain activity and their concordance in neuromyelitis optica spectrum disorder related optic neuritis: A resting-state fMRI study. Brain Res 2024; 1846:149228. [PMID: 39251055 DOI: 10.1016/j.brainres.2024.149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Characterizing the neuropathological features of neuromyelitis optica spectrum disorder-related optic neuritis (NMOSD-ON) is crucial for understanding its mechanisms. Given the important role of dynamic features in the brain's functional architecture, we aim to investigate the dynamic features of spontaneous brain activity and their concordance using resting-state functional magnetic resonance imaging (rs-fMRI) in NMOSD-ON. METHODS Fourteen NMOSD-ON patients and 21 healthy controls (HCs) underwent rs-fMRI and ophthalmological examinations. Five dynamic indices depicting different aspects of functional characteristics were calculated using a sliding window method based on rs-fMRI data. Kendall's coefficient was utilized to measure concordance among these indices at each time point. The differences of dynamic features between two groups were evaluated using two-sample t-tests, with correlations explored between altered dynamics and clinical parameters. RESULTS Compared to HCs, NMOSD-ON patients exhibited significant decreases in dynamic regional homogeneity (dReHo) and dynamic degree centrality (dDC) in visual regions, including bilateral cuneus, lingual gyrus, calcarine sulcus, and occipital gyrus. Conversely, increases were observed in left insula, left thalamus, and bilateral caudate. The concordance of NMOSD-ON patients was significantly lower than HCs. The dReHo of right cuneus negatively correlated with mean deviation of visual field (r = -0.591, p = 0.026) and the dReHo of left cuneus negatively correlated with disease duration (r = -0.588, p = 0.030). CONCLUSION The evidence suggests that regional dynamic functional alterations involving vision, emotional processing, and cognitive control may provide a new understanding of brain changes in the progression of NMOSD-ON.
Collapse
Affiliation(s)
- Hanjuan Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qing Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Nanxi Fei
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Wang W, Bo T, Zhang G, Li J, Ma J, Ma L, Hu G, Tong H, Lv Q, Araujo DJ, Luo D, Chen Y, Wang M, Wang Z, Wang GZ. Noncoding transcripts are linked to brain resting-state activity in non-human primates. Cell Rep 2023; 42:112652. [PMID: 37335775 DOI: 10.1016/j.celrep.2023.112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Brain-derived transcriptomes are known to correlate with resting-state brain activity in humans. Whether this association holds in nonhuman primates remains uncertain. Here, we search for such molecular correlates by integrating 757 transcriptomes derived from 100 macaque cortical regions with resting-state activity in separate conspecifics. We observe that 150 noncoding genes explain variations in resting-state activity at a comparable level with protein-coding genes. In-depth analysis of these noncoding genes reveals that they are connected to the function of nonneuronal cells such as oligodendrocytes. Co-expression network analysis finds that the modules of noncoding genes are linked to both autism and schizophrenia risk genes. Moreover, genes associated with resting-state noncoding genes are highly enriched in human resting-state functional genes and memory-effect genes, and their links with resting-state functional magnetic resonance imaging (fMRI) signals are altered in the brains of patients with autism. Our results highlight the potential for noncoding RNAs to explain resting-state activity in the nonhuman primate brain.
Collapse
Affiliation(s)
- Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangxiao Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daniel J Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dong Luo
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Yuejun Chen
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Bartels F, Lu A, Oertel FC, Finke C, Paul F, Chien C. Clinical and neuroimaging findings in MOGAD-MRI and OCT. Clin Exp Immunol 2021; 206:266-281. [PMID: 34152000 PMCID: PMC8561692 DOI: 10.1111/cei.13641] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are rare in both children and adults, and have been recently suggested to be an autoimmune neuroinflammatory group of disorders that are different from aquaporin-4 autoantibody-associated neuromyelitis optica spectrum disorder and from classic multiple sclerosis. In-vivo imaging of the MOGAD patient central nervous system has shown some distinguishing features when evaluating magnetic resonance imaging of the brain, spinal cord and optic nerves, as well as retinal imaging using optical coherence tomography. In this review, we discuss key clinical and neuroimaging characteristics of paediatric and adult MOGAD. We describe how these imaging techniques may be used to study this group of disorders and discuss how image analysis methods have led to recent insights for consideration in future studies.
Collapse
Affiliation(s)
- Frederik Bartels
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Angelo Lu
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Frederike Cosima Oertel
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Claudia Chien
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
- Department for Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
6
|
Zhao P, Lv H, Guo P, Su Y, Liu M, Wang Y, Hua H, Kang S. Altered Brain Functional Connectivity at Resting-State in Patients With Non-arteritic Anterior Ischemic Optic Neuropathy. Front Neurosci 2021; 15:712256. [PMID: 34658763 PMCID: PMC8517223 DOI: 10.3389/fnins.2021.712256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the possible changes in functional connectivity (FC) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) using resting-state functional MRI (fMRI). Methods: Thirty-one NAION patients and 31 healthy controls were recruited and underwent resting-state fMRI scans. Regions of interest (ROIs) were defined as bilateral Brodmann’s area 17 (BA17). FC analysis was performed between the ROIs and the rest of the brain regions, and the between group comparisons of FC were performed. We conducted correlation analysis between the FC changes and the clinical variables in NAION patients. Results: Compared with healthy controls, patients with NAION showed significantly decreased FC between the left BA17 and the right inferior frontal gyrus, left caudate nucleus. As for the right BA17, patients exhibited significantly increased FC with the left olfactory gyrus and decreased FC with the right superior frontal gyrus (SFG), right insula. Moreover, FC values between the right insula and the right BA17 were positively correlated with the right side of mean sensitivity in the central visual field (r = 0.52, P < 0.01) and negatively correlated with the right side of mean defect in the central visual field (r = −0.55, P < 0.01). Conclusion: Our study indicated that patients with NAION showed significantly abnormal functional reorganization between the primary visual cortex and several other brain regions not directly related to visual function, which supports that NAION may not only be an ophthalmic disease but also a neuro-ophthalmological disease.
Collapse
Affiliation(s)
- Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Lin TY, Chien C, Lu A, Paul F, Zimmermann HG. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: an updated review. Expert Rev Neurother 2021; 21:1101-1123. [PMID: 34551653 DOI: 10.1080/14737175.2021.1982697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein IgG antibody-associated disorders (MOGAD) comprise two groups of rare neuroinflammatory diseases that cause attack-related damage to the central nervous system (CNS). Clinical attacks are often characterized by optic neuritis, transverse myelitis, and to a lesser extent, brainstem encephalitis/area postrema syndrome. Retinal optical coherence tomography (OCT) is a non-invasive technique that allows for in vivo thickness quantification of the retinal layers. Apart from OCT, magnetic resonance imaging (MRI) plays an increasingly important role in NMOSD and MOGAD diagnosis based on the current international diagnostic criteria. Retinal OCT and brain/spinal cord/optic nerve MRI can help to distinguish NMOSD and MOGAD from other neuroinflammatory diseases, particularly from multiple sclerosis, and to monitor disease-associated CNS-damage. AREAS COVERED This article summarizes the current status of imaging research in NMOSD and MOGAD, and reviews the clinical relevance of OCT, MRI and other relevant imaging techniques for differential diagnosis, screening and monitoring of the disease course. EXPERT OPINION Retinal OCT and MRI can visualize and quantify CNS damage in vivo, improving our understanding of NMOSD and MOGAD pathology. Further efforts on the standardization of these imaging techniques are essential for implementation into clinical practice and as outcome parameters in clinical trials.
Collapse
Affiliation(s)
- Ting-Yi Lin
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelo Lu
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|