1
|
Zúñiga D, Stumpf MAM, Monteiro ALS, Glezer A. Aromatase inhibitors as a therapeutic strategy for male prolactinoma resistant to dopamine agonists: a retrospective cohort study and literature review. J Endocrinol Invest 2024; 47:1295-1303. [PMID: 37938428 DOI: 10.1007/s40618-023-02231-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE To assess the effect of letrozole, an aromatase inhibitor (AI), in patients with resistant prolactinoma that presented an increase in serum prolactin (PRL) levels during testosterone replacement therapy (TRT). METHODS A retrospective cohort study in a single tertiary care center. From March 2012 to July 2023, 53 male patients over 18 years with prolactinoma were followed in our Neuroendocrine Unit. Of those, 90.6% presented macroadenomas, 41% of them were resistant to cabergoline and 25% presented persistent hypogonadism to whom TRT was indicated. Among them, five presented a significant increase in PRL levels and AI was initiated. All five patients had resistant prolactinomas. One of them was excluded due to tumor aggressiveness and concomitant use of temozolomide during AI therapy. RESULTS Four patients were included in the analysis, with a mean age of 28.5 (± 7.5) years, median prolactin of 1060 (600 to 6700) ng/mL and median of the largest tumor diameter of 3.6 (1.5 to 5) cm at the time of prolactinoma diagnosis. On TRT, all presented an increase in serum PRL levels (231 to 396%), with a subsequent decrease (61 to 93%) after adding AI. During AI treatment for a median time of 60.5 (21 to 120) months, tumor shrinkage was observed in two cases (-8 and -3 mm in the maximum diameter) and tumor stability in the other two. No major side effects occurred and AI was well tolerated. CONCLUSION AI might be an option for men with resistant prolactinoma who have an increase in PRL levels on TRT. Nevertheless, prospective randomized clinical trials are needed to ensure efficacy and security for this approach.
Collapse
Affiliation(s)
- D Zúñiga
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of São Paulo Medical School Hospital, R. Dr. Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - M A M Stumpf
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of São Paulo Medical School Hospital, R. Dr. Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil.
| | - A L S Monteiro
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of São Paulo Medical School Hospital, R. Dr. Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - A Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, University of São Paulo Medical School Hospital, R. Dr. Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| |
Collapse
|
2
|
Cheng J, Xie W, Chen Y, Sun Y, Gong L, Wang H, Li C, Zhang Y. Drug resistance mechanisms in dopamine agonist-resistant prolactin pituitary neuroendocrine tumors and exploration for new drugs. Drug Resist Updat 2024; 73:101056. [PMID: 38277755 DOI: 10.1016/j.drup.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/11/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND The treatment of dopamine agonists (DA) resistant prolactinomas remains a formidable challenge, as the mechanism of resistance is still unclear, and there are currently no viable alternative drug therapies available. This study seeks to investigate the mechanism of DA resistance in prolactinomas and identify new potentially effective drugs. METHODS To explore the mechanism of DA resistance in prolactinomas, this study conducted transcriptome sequencing analysis on 27 cases of DA-resistant prolactinomas and 10 cases of sensitive prolactinomas. In addition, single-cell sequencing analysis was performed on 3 cases of DA-resistant prolactinomas and 3 cases of sensitive prolactinomas. Furthermore, to screen for potential therapeutic drugs, the study successfully established an organoids model for DA-resistant prolactinomas and screened 180 small molecule compounds using 8 organoids. The efficacy of the identified drugs was verified through various assays, including CCK-8, colony formation, CTG, and flow cytometry, and their mechanisms of action were confirmed through WB and IHC. The effectiveness of the identified drugs was evaluated both in vitro and in vivo. RESULTS The results of transcriptome sequencing and single-cell sequencing analyses showed that DA resistance in prolactinomas is associated with the upregulation of the Focal Adhesion (FA) signaling pathway. Additionally, immunohistochemical validation revealed that FAK and Paxillin were significantly upregulated in DA-resistant prolactinomas. Screening of 180 small molecule compounds using 8 organoids identified Genistein as a potentially effective drug for DA-resistant prolactinomas. Experimental validation demonstrated that Genistein inhibited the proliferation of pituitary tumor cell lines and organoids and promoted apoptosis in pituitary tumor cells. Moreover, both the cell sequencing results and WB validation results of the drug-treated cells indicated that Genistein exerts its anti-tumor effect by inhibiting the FA pathway. In vivo, experiments also showed that Genistein can inhibit subcutaneous tumor formation. CONCLUSION DA resistance in prolactinomas is associated with upregulation of the Focal Adhesion (FA) signaling pathway, and Genistein can exert its anti-tumor effect by inhibiting the expression of the FA pathway.
Collapse
Affiliation(s)
- Jianhua Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yiyuan Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yingxuan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Lei Gong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hongyun Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital affiliated with Capital Medical University, Beijing 100070, China; Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital affiliated with Capital Medical University, Beijing 100070, China; Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
3
|
Шутова АС, Пигарова ЕА, Лепешкина ЛИ, Иоутси ВА, Дроков МЮ, Воротникова СЮ, Астафьева ЛИ, Дзеранова ЛК. [Overcoming therapy resistance in prolactinomas: from perspectives to real clinical practice]. PROBLEMY ENDOKRINOLOGII 2024; 69:63-69. [PMID: 38311996 PMCID: PMC10848183 DOI: 10.14341/probl13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 02/06/2024]
Abstract
The main treatment option of prolactin-secreting pituitary adenomas is dopamine agonist therapy, which demonstrates prolactin level normalizing and reducing the size of an adenoma in the majority of cases. However, significant amount of patients - about 20% - poorly responds even to high doses of dopamine agonists that is explained by the resistance to therapy. The occurrence of pharmacodynamic characteristics is one of the causes responsible for the development of resistance to typical therapy. Clinical manifestations of persistent hyperprolactinemia are due to following pathological factors: hormonal hypersecretion and the mass-effect of pituitary adenoma. Prevention of irreversible changes is possible only with timely detection of resistance and determination of the optimal personalized treatment algorithm.We report a clinical case of dopamine-agonist resistant microprolactinoma. Patient's health stabilisation, normal level of prolactin and reduction in size of adenoma were achieved due to administration of combined treatment with tamoxifen and dopamine agonists. Hyperprolactinaemia occurring because of prolactin-secreting pituitary adenoma and associated adverse effects are significant problem, decreasing quality of life and demographics in general. This underlines the importance of figuring out causes and identifying predictors of the therapy resistance.The results of the study, illustrated by a clinical example, are presented in the present paper.
Collapse
Affiliation(s)
- А. С. Шутова
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Пигарова
- Национальный медицинский исследовательский центр эндокринологии
| | | | - В. А. Иоутси
- Национальный медицинский исследовательский центр эндокринологии
| | - М. Ю. Дроков
- Национальный медицинский исследовательский центр гематологии
| | | | - Л. И. Астафьева
- Национальный медицинский исследовательский центр нейрохирургии им. акад. Н.Н. Бурденко
| | - Л. К. Дзеранова
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
4
|
Serioli S, Agostini L, Pietrantoni A, Valeri F, Costanza F, Chiloiro S, Buffoli B, Piazza A, Poliani PL, Peris-Celda M, Iavarone F, Gaudino S, Gessi M, Schinzari G, Mattogno PP, Giampietro A, De Marinis L, Pontecorvi A, Fontanella MM, Lauretti L, Rindi G, Olivi A, Bianchi A, Doglietto F. Aggressive PitNETs and Potential Target Therapies: A Systematic Review of Molecular and Genetic Pathways. Int J Mol Sci 2023; 24:15719. [PMID: 37958702 PMCID: PMC10650665 DOI: 10.3390/ijms242115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Recently, advances in molecular biology and bioinformatics have allowed a more thorough understanding of tumorigenesis in aggressive PitNETs (pituitary neuroendocrine tumors) through the identification of specific essential genes, crucial molecular pathways, regulators, and effects of the tumoral microenvironment. Target therapies have been developed to cure oncology patients refractory to traditional treatments, introducing the concept of precision medicine. Preliminary data on PitNETs are derived from preclinical studies conducted on cell cultures, animal models, and a few case reports or small case series. This study comprehensively reviews the principal pathways involved in aggressive PitNETs, describing the potential target therapies. A search was conducted on Pubmed, Scopus, and Web of Science for English papers published between 1 January 2004, and 15 June 2023. 254 were selected, and the topics related to aggressive PitNETs were recorded and discussed in detail: epigenetic aspects, membrane proteins and receptors, metalloprotease, molecular pathways, PPRK, and the immune microenvironment. A comprehensive comprehension of the molecular mechanisms linked to PitNETs' aggressiveness and invasiveness is crucial. Despite promising preliminary findings, additional research and clinical trials are necessary to confirm the indications and effectiveness of target therapies for PitNETs.
Collapse
Affiliation(s)
- Simona Serioli
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Ludovico Agostini
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | | | - Federico Valeri
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flavia Costanza
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Sabrina Chiloiro
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Barbara Buffoli
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
| | - Amedeo Piazza
- Department of Neuroscience, Neurosurgery Division, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Pietro Luigi Poliani
- Pathology Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele, 20132 Milan, Italy;
| | - Maria Peris-Celda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Otolaryngology/Head and Neck Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy
| | - Simona Gaudino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Radiological Sciences, Institute of Radiology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marco Gessi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pier Paolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Laura De Marinis
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Alfredo Pontecorvi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy;
| | - Liverana Lauretti
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Guido Rindi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Neuropathology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Alessandro Olivi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Bianchi
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Francesco Doglietto
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 20123 Rome, Italy; (L.A.); (F.V.); (F.C.); (S.G.); (M.G.); (G.S.); (L.D.M.); (A.P.); (L.L.); (G.R.); (A.O.); (A.B.); (F.D.)
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
5
|
Selek A, Halbutoğulları ZSU, Aydemir Çİ, Cetinarslan B, Canturk Z, Tarkun I, Erman G, Subaşı C, Erdal K. Letrozole Decreased Testosterone-Induced Cell Proliferation and Prolactin Secretion also Increased Apoptosis in MMQ and GH3 Rat Prolactinoma Cell Lines. Mol Neurobiol 2023; 60:2442-2454. [PMID: 36662360 DOI: 10.1007/s12035-023-03220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Aromatase enzyme plays an essential role in estrogen-induced tumorigenesis. It is expressed in the normal pituitary and more significantly in prolactinoma tissues. The aim of this study was to investigate the effects of an aromatase inhibitor, letrozole, on MMQ and GH3 rat prolactinoma cell lines and evaluate the possible mechanism of action. MMQ and GH3 cells were characterized with demonstrating aromatase enzyme and estrogen receptor alpha expression by PCR and immunofluorescence staining. After dose optimization for testosterone (T) and letrozole (L), four groups were established: only the testosteron-treated group (T) to detect cell proliferation; only letrozole-treated group (L) to investigate apoptotic effects; testosterone and letrozole concomitant-treated group to demonstrate inhibition of testosterone induced cell proliferation with letrozole treatment s(T + L) and control group (C) with no treatment. The proliferation rate of cells was determined by WST-1. For the detection of apoptotic and necrotic cells, Annexin V and caspase-3 labeling was used. Prolactin and estrogen levels were measured with ELISA, and the mRNA expression of aromatase and Esr1 was also determined. Testosterone induced the proliferation of MMQ and GH3 cells and further increased prolactin and estradiol levels. Adding letrozole to testosterone resulted in decreased cellular proliferation and even induced apoptosis. Also, letrozole administration significantly decreased prolactin and estradiol levels. However, letrozole alone had no effects on proliferation and apoptosis. Gene expression of aromatase and Esr1 was also significantly decreased by letrozole treatment. This in vitro study demonstrated that treatment of testosterone proliferating cells with letrozole resulted in decreased prolactin levels and cell proliferation and induced apoptosis, and further loss of aromatase and Esr1 mRNA expression were observed. Although this is an in vivo study, the results showed unique and novel findings which may easily be adapted to clinical use for further verification.
Collapse
Affiliation(s)
- Alev Selek
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kocaeli University, Umuttepe Kocaeli, Turkey.
| | - Zehra Seda Unal Halbutoğulları
- Department of Medical Biology, Faculty of Medicine, Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli University, Umuttepe Kocaeli, Turkey
| | | | - Berrin Cetinarslan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kocaeli University, Umuttepe Kocaeli, Turkey
| | - Zeynep Canturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kocaeli University, Umuttepe Kocaeli, Turkey
| | - Ilhan Tarkun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kocaeli University, Umuttepe Kocaeli, Turkey
| | - Gülay Erman
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | | | - Karaöz Erdal
- Center for Stem Cell and Tissue Engineering Research & Pracitce, İstinye University, İstanbul, Turkey
| |
Collapse
|
6
|
Akirov A, Rudman Y. The Role of Aromatase Inhibitors in Male Prolactinoma. J Clin Med 2023; 12:jcm12041437. [PMID: 36835974 PMCID: PMC9962537 DOI: 10.3390/jcm12041437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND dopamine agonists are the recommended treatment for male prolactinomas, but some patients may develop dopamine-agonist-resistant hyperprolactinemia, leading to persistent hypogonadism that requires treatment with testosterone. However, testosterone replacement therapy may be associated with a decrease in the efficacy of dopamine agonists due to the aromatization of testosterone to estradiol, which can stimulate the proliferation and hyperplasia of lactotroph cells in the pituitary, inducing resistance to dopamine agonists. OBJECTIVE this paper systematically reviewed the role of aromatase inhibitors for men with prolactinoma and dopamine-agonist-resistant or persistent hypogonadism following treatment. METHOD we performed a systematic review of all studies (according to PRISMA guidelines), assessing the role of aromatase inhibitors, including anastrozole and letrozole, for male prolactinoma. An English-language search for relevant studies was conducted on PubMed from its inception to 1 December 2022. The reference lists of the relevant studies were also reviewed. RESULTS our systematic review identified six articles (nine patients), including five case reports and a single case series, on the use of aromatase inhibitors for male prolactinomas. Reducing estrogen levels with an aromatase inhibitor improved sensitivity to dopamine agonists, as the addition of anastrozole or letrozole improves the control of prolactin levels and may lead to the shrinkage of tumors. CONCLUSION aromatase inhibitors are of potential value to patients with dopamine-agonist-resistant prolactinoma, or when hypogonadism persists while using high-dose dopamine agonists.
Collapse
Affiliation(s)
- Amit Akirov
- Institute of Endocrinology, Beilinson Hospital, Petach Tikva 49100, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-524650760; Fax: +972-3-9377181
| | - Yaron Rudman
- Institute of Endocrinology, Beilinson Hospital, Petach Tikva 49100, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Szmygin H, Szydełko J, Matyjaszek-Matuszek B. Dopamine Agonist-Resistant Microprolactinoma—Mechanisms, Predictors and Management: A Case Report and Literature Review. J Clin Med 2022; 11:jcm11113070. [PMID: 35683457 PMCID: PMC9181764 DOI: 10.3390/jcm11113070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 01/09/2023] Open
Abstract
Objective: Prolactinomas are the most common type of functional, hormone-secreting pituitary adenomas that account for about 40% of total pituitary adenomas. Typical clinical presentations include loss of menstrual periods (amenorrhea) and galactorrhoea in women and sexual dysfunction in men. Prolactinomas are preferentially treated with dopamine agonists and respond to such therapy with hormonal normalisation and tumour shrinkage. However, about 10–20% of prolactinomas are resistant to dopamine agonists. The management of dopamine agonist-resistant prolactinomas poses a therapeutic challenge and includes several possible approaches. Design and Methods: In this study, we present a case report of a woman diagnosed with microprolactinoma at the age of 27 who did not fully respond either to treatment with dopamine agonists nor to transsphenoidal surgery. This was followed by a review of literature on the current state of knowledge about the mechanisms, predictors, and management of dopamine agonist-resistant prolactinomas on the basis of recent scientific literature published up to November 2021 and searches of the PubMed, Google Scholar, and Web of Science databases. Results and Conclusions: The exact mechanisms underlying dopamine agonists’ resistance in lactotroph tumours are not fully understood, yet refractory prolactinomas pose a great challenge in everyday clinical practice. Several predictive factors that contribute to poor response to medical treatment have been identified, among them the elevated Ki-67 index. Recently, various alternative medical treatments have been considered, but their usefulness remains to be evaluated. A return of menses can serve as a first clinical indication of successful medical treatment.
Collapse
|
8
|
Sari R, Altinoz MA, Ozlu EBK, Sav A, Danyeli AE, Baskan O, Er O, Elmaci I. Treatment Strategies for Dopamine Agonist-Resistant and Aggressive Prolactinomas: A Comprehensive Analysis of the Literature. Horm Metab Res 2021; 53:413-424. [PMID: 34282593 DOI: 10.1055/a-1525-2131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite most of the prolactinomas can be treated with endocrine therapy and/or surgery, a significant percentage of these tumors can be resistant to endocrine treatments and/or recur with prominent invasion into the surrounding anatomical structures. Hence, clinical, pathological, and molecular definitions of aggressive prolactinomas are important to guide for classical and novel treatment modalities. In this review, we aimed to define molecular endocrinological features of dopamine agonist-resistant and aggressive prolactinomas for designing future multimodality treatments. Besides surgery, temozolomide chemotherapy and radiotherapy, peptide receptor radionuclide therapy, estrogen pathway modulators, progesterone antagonists or agonists, mTOR/akt inhibitors, pasireotide, gefitinib/lapatinib, everolimus, and metformin are tested in preclinical models, anecdotal cases, and in small case series. Moreover, chorionic gonadotropin, gonadotropin releasing hormone, TGFβ and PRDM2 may seem like possible future targets for managing aggressive prolactinomas. Lastly, we discussed our management of a unique prolactinoma case by asking which tumors' proliferative index (Ki67) increased from 5-6% to 26% in two subsequent surgeries performed in a 2-year period, exerted massive invasive growth, and secreted huge levels of prolactin leading up to levels of 1 605 671 ng/dl in blood.
Collapse
Affiliation(s)
- Ramazan Sari
- Department of Neurosurgery, Acibadem Hospital, Maslak, Istanbul, Turkey
- Avrasya University, Health Sciences Faculty, Trabzon, Turkey
| | - Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | | | - Aydin Sav
- Department of Pathology, Yeditepe University, Istanbul, Turkey
| | - Ayca Ersen Danyeli
- Department of Pathology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ozdil Baskan
- Department of Radiology, Memorial Hospital, Istanbul, Turkey
| | - Ozlem Er
- Department of Medical Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ilhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Maslak, Istanbul, Turkey
- Department of Neurosurgery, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Shalabi MG, Abbas AM, Mills J, Kheirelseid MA, Elderdery AY. The Prognostic Value of Estrogen Receptor β Isoform With Correlation of Estrogen Receptor α Among Sudanese Breast Cancer Patients. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2021; 15:1178223421998354. [PMID: 33716507 PMCID: PMC7917412 DOI: 10.1177/1178223421998354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Two estrogen receptor isoforms (ERα and ERβ) have been characterized with variable and sometimes contrasting responses to estrogens, partially explained by different receptor signaling pathways in estrogen-sensitive tissues. This is a retrospective, descriptive, cross-sectional study, aiming to evaluate the expression pattern of ERβ, employing immunohistochemical techniques using specific monoclonal antibody for ERβ, to correlate its expression with that of ERα in a Sudanese population. Two-hundred and fifty formalin-fixed paraffin-wax-embedded breast tissue blocks were used in this study. Of these, 200 were taken from breast cancer patients ascertained as study cases, and the remaining 50 were noninvolved surgical margin considered as normal breast tissue. Receptor expression was demonstrated using immunohistochemical techniques. The immune expression of ERβ was detected in 57.5% of breast cancers. It was differentially expressed in breast tissues encompassing normal, noninvasive, as well as invasive carcinoma (P = .02). There was no evidence of a significant relationship between ERβ and ERα expression. Among the ERα-negative tumor, 60.4% expressed ERβ. The expression of ERβ among this subgroup was significantly associated with good clinicopathological parameters such as negative Her2/neu, lower grade, and negative lymph node metastasis (P = .002). This study concludes that ERβ was commonly expressed among Sudanese patients with breast cancer, either co-expressed with ERα or expressed alone. In the ERα-negative subgroup, it was associated with better tumor outcomes suggesting ERβ should be included in the diagnostic protocol as an independent marker for favorable prognosis.
Collapse
Affiliation(s)
- Manar G Shalabi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia.,Medical Laboratory Sciences Department, Nahda College, Khartoum, Sudan
| | - Anass M Abbas
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia.,Medical Laboratory Program, School of Medicine, Alyarmouk Medical College, Khartoum, Sudan
| | - Jeremy Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohamed A Kheirelseid
- Pathology Department, Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
| | - Abozer Y Elderdery
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia.,Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
10
|
Pituitary Hyperplasia, Hormonal Changes and Prolactinoma Development in Males Exposed to Estrogens-An Insight From Translational Studies. Int J Mol Sci 2020; 21:ijms21062024. [PMID: 32188093 PMCID: PMC7139613 DOI: 10.3390/ijms21062024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen signaling plays an important role in pituitary development and function. In sensitive rat or mice strains of both sexes, estrogen treatments promote lactotropic cell proliferation and induce the formation of pituitary adenomas (dominantly prolactin or growth-hormone-secreting ones). In male patients receiving estrogen, treatment does not necessarily result in pituitary hyperplasia, hyperprolactinemia or adenoma development. In this review, we comprehensively analyze the mechanisms of estrogen action upon their application in male animal models comparing it with available data in human subjects. Sex-specific molecular targets of estrogen action in lactotropic (PRL) cells are highlighted in the context of their proliferative and secretory activity. In addition, putative effects of estradiol on the cellular/tumor microenvironment and the contribution of postnatal pituitary progenitor/stem cells and transdifferentiation processes to prolactinoma development have been analyzed. Finally, estrogen-induced morphological and hormone-secreting changes in pituitary thyrotropic (TSH) and adrenocorticotropic (ACTH) cells are discussed, as well as the putative role of the thyroid and/or glucocorticoid hormones in prolactinoma development, based on the current scarce literature.
Collapse
|