1
|
Martucci G, Arcadipane A, Tuzzolino F, Occhipinti G, Panarello G, Carcione C, Bertani A, Conaldi PG, Miceli V. Circulating miRNAs as Promising Biomarkers to Evaluate ECMO Treatment Responses in ARDS Patients. MEMBRANES 2021; 11:551. [PMID: 34436314 PMCID: PMC8398026 DOI: 10.3390/membranes11080551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The use of extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) has increased in the last decade. However, mortality remains high, and the complexity of ECMO requires individualized treatment. There are some biomarkers to monitor progression and predict clinical outcomes of ARDS. This project aims to advance the management of ARDS patients treated with ECMO by exploring miRNA expression in whole blood. The analysis was conducted on two groups with different length of ECMO: Group A (longer runs) and group B (shorter runs). We analyzed miRNAs before ECMO cannulation, and at 7 and 14 days of ECMO support. Our results showed that in the group B patients, 11 deregulated miRNAs were identified, and showed an opposite trend of expression compared to the group A patients. In silico analysis revealed that these 11 miRNAs were related to processes involved in the pathogenesis and evolution of ARDS. This scenario could represent homeostatic mechanisms by which, in ECMO responsive patients, pathways activated during ARDS progression are switched-off. Circulating miRNAs could represent promising biomarkers to monitor the evolution of ARDS under ECMO support. Further studies may shed light on this topic to improve a personalized approach in such a complex setting of patients.
Collapse
Affiliation(s)
- Gennaro Martucci
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.); (A.A.); (G.O.); (G.P.)
| | - Antonio Arcadipane
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.); (A.A.); (G.O.); (G.P.)
| | - Fabio Tuzzolino
- Research Department, IRCCS-ISMETT, 90127 Palermo, Italy; (F.T.); (P.G.C.)
| | - Giovanna Occhipinti
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.); (A.A.); (G.O.); (G.P.)
| | - Giovanna Panarello
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90127 Palermo, Italy; (G.M.); (A.A.); (G.O.); (G.P.)
| | | | - Alessandro Bertani
- Division of Thoracic Surgery and Lung Transplantation, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, 90127 Palermo, Italy;
| | | | - Vitale Miceli
- Research Department, IRCCS-ISMETT, 90127 Palermo, Italy; (F.T.); (P.G.C.)
| |
Collapse
|
2
|
Garg A, Seeliger B, Derda AA, Xiao K, Gietz A, Scherf K, Sonnenschein K, Pink I, Hoeper MM, Welte T, Bauersachs J, David S, Bär C, Thum T. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail 2021; 23:468-475. [PMID: 33421274 PMCID: PMC8014268 DOI: 10.1002/ejhf.2096] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19) is a still growing pandemic, causing many deaths and socio-economic damage. Elevated expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptor angiotensin-converting enzyme 2 on cardiac cells of patients with heart diseases may be related to cardiovascular burden. We have thus analysed cardiovascular and inflammatory microRNAs (miRs), sensitive markers of cardiovascular damage, in critically ill, ventilated patients with COVID-19 or influenza-associated acute respiratory distress syndrome (Influenza-ARDS) admitted to the intensive care unit and healthy controls. METHODS AND RESULTS Circulating miRs (miR-21, miR-126, miR-155, miR-208a, and miR-499) were analysed in a discovery cohort consisting of patients with mechanically-ventilated COVID-19 (n = 18) and healthy controls (n = 15). A validation study was performed in an independent cohort of mechanically-ventilated COVID-19 patients (n = 20), Influenza-ARDS patients (n = 13) and healthy controls (n = 32). In both cohorts, RNA was isolated from serum and cardiovascular disease/inflammatory-relevant miR concentrations were measured by miR-specific TaqMan PCR analyses. In both the discovery and the validation cohort, serum concentration of miR-21, miR-155, miR-208a and miR-499 were significantly increased in COVID-19 patients compared to healthy controls. Calculating the area under the curve using receiver operating characteristic analysis miR-155, miR-208a and miR-499 showed a clear distinction between COVID-19 and Influenza-ARDS patients. CONCLUSION In this exploratory study, inflammation and cardiac myocyte-specific miRs were upregulated in critically ill COVID-19 patients. Importantly, miR profiles were able to differentiate between severely ill, mechanically-ventilated Influenza-ARDS and COVID-19 patients, indicating a rather specific response and cardiac involvement of COVID-19.
Collapse
Affiliation(s)
- Ankita Garg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Anselm A Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Anika Gietz
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristian Scherf
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Isabell Pink
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|