1
|
Wang H, Xie M, Zhao Y, Zhang Y. Establishment of a prognostic risk model for prostate cancer based on Gleason grading and cuprotosis related genes. J Cancer Res Clin Oncol 2024; 150:376. [PMID: 39085482 PMCID: PMC11291559 DOI: 10.1007/s00432-024-05899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Prostate cancer (PCa) is common in aging males, diagnosed via the Gleason grading system. The study explores the unexamined prognostic value of cuprotosis, a distinct cell death type, alongside Gleason grades in PCa. METHODS We explored Cuprotosis-related genes (CRGs) in prostate cancer (PCa), using NMF on TCGA-PRAD data for patient classification and WGCNA to link genes with Gleason scores and prognosis. A risk model was crafted via LASSO Cox regression. STX3 knockdown in PC-3 cells, analyzed for effects on cell behaviors and tumor growth in mice, highlighted its potential therapeutic impact. RESULTS We identified five genes crucial for a prognostic risk model, with higher risk scores indicating worse prognosis. Survival analysis and ROC curves confirmed the model's predictive accuracy in TCGA-PRAD and GSE70769 datasets. STX3 was a key adverse prognostic factor, with its knockdown significantly reducing mRNA and protein levels, impairing PC-3 cell functions. In vivo, STX3 knockdown in PC-3 cells led to significantly smaller tumors in nude mice, underscoring its potential therapeutic value. CONCLUSION Our prognostic model, using five genes linked to Gleason scores, effectively predicts prostate cancer outcomes, offering a novel treatment strategy angle.
Collapse
Affiliation(s)
- Haicheng Wang
- Department of Urology, Hebei Medical University, Shijiazhuang, China
- Department of Urology, Qinhuangdao First Hospital, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, China
| | - Meiyi Xie
- Department of Urology, Qinhuangdao First Hospital, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, China
| | - Yuming Zhao
- Department of Urology, Qinhuangdao First Hospital, No. 258 Wenhua Road, Haigang District, Qinhuangdao, 066000, China
| | - Yong Zhang
- Department of Urology, Hebei Medical University, Shijiazhuang, China.
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jia K, Shen J. Transcriptome-wide association studies associated with Crohn's disease: challenges and perspectives. Cell Biosci 2024; 14:29. [PMID: 38403629 PMCID: PMC10895848 DOI: 10.1186/s13578-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
Crohn's disease (CD) is regarded as a lifelong progressive disease affecting all segments of the intestinal tract and multiple organs. Based on genome-wide association studies (GWAS) and gene expression data, transcriptome-wide association studies (TWAS) can help identify susceptibility genes associated with pathogenesis and disease behavior. In this review, we overview seven reported TWASs of CD, summarize their study designs, and discuss the key methods and steps used in TWAS, which affect the prioritization of susceptibility genes. This article summarized the screening of tissue-specific susceptibility genes for CD, and discussed the reported potential pathological mechanisms of overlapping susceptibility genes related to CD in a certain tissue type. We observed that ileal lipid-related metabolism and colonic extracellular vesicles may be involved in the pathogenesis of CD by performing GO pathway enrichment analysis for susceptibility genes. We further pointed the low reproducibility of TWAS associated with CD and discussed the reasons for these issues, strategies for solving them. In the future, more TWAS are needed to be designed into large-scale, unified cohorts, unified analysis pipelines, and fully classified databases of expression trait loci.
Collapse
Affiliation(s)
- Keyu Jia
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China
| | - Jun Shen
- Laboratory of Medicine, Baoshan Branch, Ren Ji Hospital, School of Medicine, Nephrology department, Shanghai Jiao Tong University, 1058 Huanzhen Northroad, Shanghai, 200444, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Research Center, Ren Ji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China.
- NHC Key Laboratory of Digestive Diseases, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Zhang S, Fan W, He D. Constructing a personalized prognostic risk model for colorectal cancer using machine learning and multi-omics approach based on epithelial-mesenchymal transition-related genes. J Gene Med 2024; 26:e3660. [PMID: 38282145 DOI: 10.1002/jgm.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
The progression and the metastatic potential of colorectal cancer (CRC) are intricately linked to the epithelial-mesenchymal transition (EMT) process. The present study harnesses the power of machine learning combined with multi-omics data to develop a risk stratification model anchored on EMT-associated genes. The aim is to facilitate personalized prognostic assessments in CRC. We utilized publicly accessible gene expression datasets to pinpoint EMT-associated genes, employing a CoxBoost algorithm to sift through these genes for prognostic significance. The resultant model, predicated on gene expression levels, underwent rigorous independent validation across various datasets. Our model demonstrated a robust capacity to segregate CRC patients into distinct high- and low-risk categories, each correlating with markedly different survival probabilities. Notably, the risk score emerged as an independent prognostic indicator for CRC. High-risk patients were characterized by an immunosuppressive tumor milieu and a heightened responsiveness to certain chemotherapeutic agents, underlining the model's potential in steering tailored oncological therapies. Moreover, our research unearthed a putative repressive interaction between the long non-coding RNA PVT1 and the EMT-associated genes TIMP1 and MMP1, offering new insights into the molecular intricacies of CRC. In essence, our research introduces a sophisticated risk model, leveraging machine learning and multi-omics insights, which accurately prognosticates outcomes for CRC patients, paving the way for more individualized and effective oncological treatment paradigms.
Collapse
Affiliation(s)
- Shuze Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wanli Fan
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Dong He
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
5
|
Jiang YH, Wu SY, Wang Z, Zhang L, Zhang J, Li Y, Liu C, Wu WZ, Xue YT. Bioinformatics analysis identifies ferroptosis‑related genes in the regulatory mechanism of myocardial infarction. Exp Ther Med 2022; 24:748. [PMID: 36561967 PMCID: PMC9748705 DOI: 10.3892/etm.2022.11684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
Since ferroptosis is considered to be a notable cause of cardiomyocyte death, inhibiting ferroptosis has become a novel strategy in reducing cardiac cell death and improving cardiopathic conditions. Therefore, the aim of the present study was to search for ferroptosis-related hub genes and determine their diagnostic value in myocardial infarction (MI) to aid in the diagnosis and treatment of the disease. A total of 10,286 DEGs were identified, including 6,822 upregulated and 3.464 downregulated genes in patients with MI compared with healthy controls. After overlapping with ferroptosis-related genes, 128 ferroptosis-related DEGs were obtained. WGCNA successfully identified a further eight functional modules, from which the blue module had the strongest correlation with MI. Blue module genes and ferroptosis-related differentially expressed genes were overlapped to obtain 20 ferroptosis-related genes associated with MI. Go and KEGG analysis showed that these genes were mainly enriched in cellular response to chemical stress, trans complex, transferring, phosphorus-containing groups, protein serine/threonine kinase activity, FoxO signaling pathway. Hub genes were obtained from 20 ferroptosis-related genes through the PPI network. The expression of hub genes was found to be down-regulated in the MI group. Finally, the miRNAs-hub genes and TFs-hub genes networks were constructed. The GSE141512 dataset and the use of RT-qPCR assays on patient blood samples were used to confirm these results. The results showed that ATM, PIK3CA, MAPK8, KRAS and SIRT1 may play key roles in the development of MI, and could therefore be novel markers or targets for the diagnosis or treatment of MI.
Collapse
Affiliation(s)
- Yong-Hao Jiang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Su-Ying Wu
- Foreign Language College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Zhen Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Zhang
- Foreign Language College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Juan Zhang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yan Li
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chenglong Liu
- Foreign Language College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Wen-Zhe Wu
- Cardiovascular Department, Dezhou Municipal Hospital, Dezhou, Shandong 253000, P.R. China,Correspondence to: Professor Wen-Zhe Wu, Cardiovascular Department, Dezhou Municipal Hospital, 1766 Sanba Zhong Road, Decheng, Dezhou, Shandong 253000, P.R. China
| | - Yi-Tao Xue
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China,Correspondence to: Professor Wen-Zhe Wu, Cardiovascular Department, Dezhou Municipal Hospital, 1766 Sanba Zhong Road, Decheng, Dezhou, Shandong 253000, P.R. China
| |
Collapse
|
6
|
Pan Y, Wu L, He S, Wu J, Wang T, Zang H. Identification of hub genes and immune cell infiltration characteristics in chronic rhinosinusitis with nasal polyps: Bioinformatics analysis and experimental validation. Front Mol Biosci 2022; 9:843580. [PMID: 36060258 PMCID: PMC9431028 DOI: 10.3389/fmolb.2022.843580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of our study is to reveal the hub genes related to the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and their association with immune cell infiltration through bioinformatics analysis combined with experimental validation. In this study, through differential gene expression analysis, 1,516 upregulated and 1,307 downregulated DEG were obtained from dataset GSE136825 of the GEO database. We identified 14 co-expressed modules using weighted gene co-expression network analysis (WGCNA), among which the most significant positive and negative correlations were MEgreen and MEturquoise modules, containing 1,540 and 3,710 genes respectively. After the intersection of the two modules and DEG, two gene sets—DEG-MEgreen and DEG-MEturquoise—were obtained, containing 395 and 1,168 genes respectively. Through GO term analysis, it was found that immune response and signal transduction are the most important biological processes. We found, based on KEGG pathway enrichment analysis, that osteoclast differentiations, cytokine–cytokine receptor interactions, and neuroactive ligand–receptor interactions are the most important in the two gene sets. Through PPI network analysis, we listed the top-ten genes for the concentrated connectivity of the two gene sets. Next, a few genes were verified by qPCR experiments, and FPR2, ITGAM, C3AR1, FCER1G, CYBB in DEG-MEgreen and GNG4, NMUR2, and GNG7 in DEG-MEturquoise were confirmed to be related to the pathogenesis of CRSwNP. NP immune cell infiltration analysis revealed a significant difference in the proportion of immune cells between the NP group and control group. Finally, correlation analysis between target hub genes and immune cells indicated that FPR2 and GNG7 had a positive or negative correlation with some specific immune cells. In summary, the discoveries of these new hub genes and their association with immune cell infiltration are of great significance for uncovering the specific pathogenesis of CRSwNP and searching for disease biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yangwang Pan
- Department of Otolaryngology Head and Neck Surgery, Civil Aviation General Hospital (Peking University Civil Aviation School of Clinical Medicine), Bejing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yangwang Pan, ; Hongrui Zang,
| | - Linjing Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuai He
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongrui Zang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yangwang Pan, ; Hongrui Zang,
| |
Collapse
|
7
|
A potent HNF4α agonist reveals that HNF4α controls genes important in inflammatory bowel disease and Paneth cells. PLoS One 2022; 17:e0266066. [PMID: 35385524 PMCID: PMC8985954 DOI: 10.1371/journal.pone.0266066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
HNF4α has been implicated in IBD through a number of genome-wide association studies. Recently, we developed potent HNF4α agonists, including N-trans caffeoyltyramine (NCT). NCT was identified by structural similarity to previously the previously identified but weak HNF4α agonists alverine and benfluorex. Here, we administered NCT to mice fed a high fat diet, with the goal of studying the role of HNF4α in obesity-related diseases. Intestines from NCT-treated mice were examined by RNA-seq to determine the role of HNF4α in that organ. Surprisingly, the major classes of genes altered by HNF4α were involved in IBD and Paneth cell biology. Multiple genes downregulated in IBD were induced by NCT. Paneth cells identified by lysozyme expression were reduced in high fat fed mice. NCT reversed the effect of high fat diet on Paneth cells, with multiple markers being induced, including a number of defensins, which are critical for Paneth cell function and intestinal barrier integrity. NCT upregulated genes that play important role in IBD and that are downregulated in that disease. It reversed the loss of Paneth cell markers that occurred in high fat diet fed mice. These data suggest that HNF4α could be a therapeutic target for IBD and that the agonists that we have identified could be candidate therapeutics.
Collapse
|
8
|
Hu M, Wang J. Identification of Hub Genes and Immune Cell Infiltration Characteristics in Alzheimer's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7036194. [PMID: 34966527 PMCID: PMC8712155 DOI: 10.1155/2021/7036194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to identify hub genes closely correlated with Alzheimer's disease (AD) and their association with immune cell infiltration. In this work, 119 overlapping differentially expressed genes (DEGs) were obtained from GSE5281 and GSE122063 datasets through differential expression analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the 119 DEGs, revealing some important biological functions and key pathways. AD immune cell infiltration analysis revealed a significant difference in the proportion of immune cells between the AD group and the control group. Finally, correlation analysis between target hub genes and immune cells indicated that GFAP had a positive or negative correlation with some specific immune cells. Our results provided useful clues, which will help to explain the molecular mechanism of AD and search for precise prognostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Ming Hu
- Department of Graduate School, Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jianhua Wang
- Department of Graduate School, Hebei Medical University, Shijiazhuang 050000, Hebei, China
- Deparment of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
9
|
Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021; 22:ijms22094377. [PMID: 33922158 PMCID: PMC8122716 DOI: 10.3390/ijms22094377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.
Collapse
|