1
|
Rusbridge C. Neuropathic pain in cats: Mechanisms and multimodal management. J Feline Med Surg 2024; 26:1098612X241246518. [PMID: 38710218 PMCID: PMC11156241 DOI: 10.1177/1098612x241246518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PRACTICAL RELEVANCE Chronic pain is a significant welfare concern in cats, and neuropathic pain, which arises from aberrant processing of sensory signals within the nervous system, is a subcategory of this type of pain. To comprehend this condition and how multimodal pharmacotherapy plays a central role in alleviating discomfort, it is crucial to delve into the anatomy of nociception and pain perception. In addition, there is an intricate interplay between emotional health and chronic pain in cats, and understanding and addressing the emotional factors that contribute to pain perception, and vice versa, is essential for comprehensive care.Clinical approach:Neuropathic pain is suspected if there is abnormal sensation in the area of the distribution of pain, together with a positive response to trial treatment with drugs effective for neuropathic pain. Ideally, this clinical suspicion would be supported by confirmation of a lesion at this neurolocalisation using diagnostic modalities such as MRI and neuroelectrophysiology. Alternatively, there may be a history of known trauma at that site. A variety of therapies, including analgesic, anti-inflammatory and adjuvant drugs, and neuromodulation (eg, TENS or acupuncture), can be employed to address different facets of pain pathways.Aim:This review article, aimed at primary care/ general practitioners, focuses on the identification and management of neuropathic pain in cats. Three case vignettes are included and a structured treatment algorithm is presented to guide veterinarians in tailoring interventions.Evidence base:The review draws on current literature, where available, along with the author's extensive experience and research.
Collapse
Affiliation(s)
- Clare Rusbridge
- BVMS, PhD, DipECVN, FRCVS School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; and Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-on-Tees, UK
| |
Collapse
|
2
|
Cluster headache pathophysiology - insights from current and emerging treatments. Nat Rev Neurol 2021; 17:308-324. [PMID: 33782592 DOI: 10.1038/s41582-021-00477-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
Cluster headache is a debilitating primary headache disorder that affects approximately 0.1% of the population worldwide. Cluster headache attacks involve severe unilateral pain in the trigeminal distribution together with ipsilateral cranial autonomic features and a sense of agitation. Acute treatments are available and are effective in just over half of the patients. Until recently, preventive medications were borrowed from non-headache indications, so management of cluster headache is challenging. However, as our understanding of cluster headache pathophysiology has evolved on the basis of key bench and neuroimaging studies, crucial neuropeptides and brain structures have been identified as emerging treatment targets. In this Review, we provide an overview of what is known about the pathophysiology of cluster headache and discuss the existing treatment options and their mechanisms of action. Existing acute treatments include triptans and high-flow oxygen, interim treatment options include corticosteroids in oral form or for greater occipital nerve block, and preventive treatments include verapamil, lithium, melatonin and topiramate. We also consider emerging treatment options, including calcitonin gene-related peptide antibodies, non-invasive vagus nerve stimulation, sphenopalatine ganglion stimulation and somatostatin receptor agonists, discuss how evidence from trials of these emerging treatments provides insights into the pathophysiology of cluster headache and highlight areas for future research.
Collapse
|
3
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
4
|
Mecklenburg J, Sanchez Del Rio M, Reuter U. Cluster headache therapies: pharmacology and mode of action. Expert Rev Clin Pharmacol 2020; 13:641-654. [DOI: 10.1080/17512433.2020.1774361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jasper Mecklenburg
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Whitsel BL, Vierck CJ, Waters RS, Tommerdahl M, Favorov OV. Contributions of Nociresponsive Area 3a to Normal and Abnormal Somatosensory Perception. THE JOURNAL OF PAIN 2019; 20:405-419. [PMID: 30227224 PMCID: PMC6420406 DOI: 10.1016/j.jpain.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
Abstract
Traditionally, cytoarchitectonic area 3a of primary somatosensory cortex (SI) has been regarded as a proprioceptive relay to motor cortex. However, neuronal spike-train recordings and optical intrinsic signal imaging, obtained from nonhuman sensorimotor cortex, show that neuronal activity in some of the cortical columns in area 3a can be readily triggered by a C-nociceptor afferent drive. These findings indicate that area 3a is a critical link in cerebral cortical encoding of secondary/slow pain. Also, area 3a contributes to abnormal pain processing in the presence of activity-dependent reversal of gamma-aminobutyric acid A receptor-mediated inhibition. Accordingly, abnormal processing within area 3a may contribute mechanistically to generation of clinical pain conditions. PERSPECTIVE: Optical imaging and neurophysiological mapping of area 3a of SI has revealed substantial driving from unmyelinated cutaneous nociceptors, complementing input to areas 3b and 1 of SI from myelinated nociceptors and non-nociceptors. These and related findings force a reconsideration of mechanisms for SI processing of pain.
Collapse
Affiliation(s)
- Barry L Whitsel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Charles J Vierck
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Robert S Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
6
|
Ferrari A, Rustichelli C, Baraldi C. Glutamate receptor antagonists with the potential for migraine treatment. Expert Opin Investig Drugs 2017; 26:1321-1330. [PMID: 29050521 DOI: 10.1080/13543784.2017.1395411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.
Collapse
Affiliation(s)
- Anna Ferrari
- a Unit of Medical Toxicology, Headache and Drug Abuse Centre; Department of Diagnostic, Clinical and Public Health Medicine , University of Modena and Reggio Emilia , Modena , Italy
| | - Cecilia Rustichelli
- b Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Carlo Baraldi
- a Unit of Medical Toxicology, Headache and Drug Abuse Centre; Department of Diagnostic, Clinical and Public Health Medicine , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
7
|
Topiramate modulates trigeminal pain processing in thalamo-cortical networks in humans after single dose administration. PLoS One 2017; 12:e0184406. [PMID: 28991914 PMCID: PMC5633146 DOI: 10.1371/journal.pone.0184406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Migraine is the sixth most common cause of disability in the world. Preventive migraine treatment is used to reduce frequency, severity and duration of attacks and therefore lightens the burden on the patients' quality of life and reduces disability. Topiramate is one of the preventive migraine treatments of proven efficacy. The mechanism of action underlying the preventive effect of topiramate in migraine remains largely unknown. Using functional magnetic resonance imaging (fMRI) we examined the central effects of a single dose of topiramate (100mg) on trigeminal pain in humans, compared to placebo (mannitol). In this prospective, within subject, randomized, placebo-controlled and double-blind study, 23 healthy participants received a standardized nociceptive trigeminal stimulation and control stimuli whilst being in the scanner. No differences in the subjective intensity ratings of the painful stimuli were observed between topiramate and placebo sessions. In contrast, topiramate significantly decreased the activity in the thalamus and other pain processing areas. Additionally, topiramate increased functional coupling between the thalamus and several brain regions such as the bilateral precuneus, posterior cingulate cortex and secondary somatosensory cortex. These data suggest that topiramate exhibits modulating effects on nociceptive processing in thalamo-cortical networks during trigeminal pain and that the preventive effect of topiramate on frequent migraine is probably mediated by an effect on thalamo-cortical networks.
Collapse
|
8
|
Silberstein SD. Topiramate in Migraine Prevention: A 2016 Perspective. Headache 2016; 57:165-178. [PMID: 27902848 DOI: 10.1111/head.12997] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND In evidence-based guidelines published in 2000, topiramate was a third-tier migraine preventive with no scientific evidence of efficacy; recommendation for its use reflected consensus opinion and clinical experience. Its neurostabilizing activity, coupled with its favorable weight profile, made topiramate an attractive alternative to other migraine preventives that caused weight gain. When guidelines for migraine prevention in episodic migraine were published in 2012, topiramate was included as a first-line option based on double-blind, randomized controlled trials involving nearly 3000 patients. The scientific and clinical interest in topiramate has generated a large body of data from randomized controlled trials, meta-analyses, patient registries, cohort studies, and claims data analyses that have more fully characterized its role as a migraine preventive. AIM This article will review the profile of topiramate that has emerged out of the past decade of research and clinical use in migraine prophylaxis. It will also address the rationale for extended-release (XR) formulations in optimizing topiramate therapy in migraine. SUMMARY Topiramate has activity at multiple molecular targets, which may account for why it is effective in migraine and most other, more specific, anticonvulsants are not. Based on randomized controlled trials, topiramate reduces migraine frequency and acute medication use, improves quality of life, and reduces disability in patients with episodic migraine and in those with chronic migraine with or without medication overuse headache. Its efficacy in chronic migraine is not improved by the addition of propranolol. Topiramate's ability to prevent progression from high-frequency episodic migraine to chronic migraine remains unclear. Consistent with clinicians' perceptions, migraineurs are more sensitive to topiramate-associated side effects than patients with epilepsy. Paresthesia is a common occurrence early in treatment but is rarely cause for terminating topiramate treatment. Cognitive problems occur much less frequently than paresthesia but are more troublesome in terms of treatment discontinuation. Cognitive complaints can often be managed by slowly increasing the topiramate dose in small increments to allow habituation. As with other carbonic anhydrase inhibitors, topiramate has metabolic effects that favor the development of metabolic acidosis and possibly renal stones. Because migraineurs have an increased risk of renal stones independent of topiramate exposure, clinicians should counsel all migraine patients to maintain hydration. Abrupt onset of blurring, other visual disturbances, and/or ocular pain following topiramate's initiation should be evaluated promptly since this may indicate rare but potentially sight-threatening idiosyncratic events. Postmarketing evidence has shown that first-trimester exposure to topiramate monotherapy is associated with increased occurrence of cleft lip with or without cleft palate (Pregnancy Category D). Even though topiramate's long half-life would seemingly support q.d. dosing, randomized controlled migraine trials used b.i.d. administration of immediate-release (IR) topiramate, which has more favorable plasma concentration-time profile (ie, lower peak concentrations and higher trough concentrations) than q.d. IR dosing. Given the sensitivity of migraineurs to topiramate-related adverse events, particularly cognitive effects, pharmacokinetic profiles should be considered when optimizing migraine outcomes. The extended-release (XR) formulations Qudexy® XR (Upsher-Smith Laboratories) and Trokendi XR® (Supernus Pharmaceuticals) were specifically designed to achieve the adherence benefits of q.d. dosing but with more favorable (ie, more constant) steady-state plasma concentrations over the 24-hour dosing interval vs IR topiramate b.i.d. Intriguing results from a study in healthy volunteers showed consistently less impairment in neuropsychometric tests of verbal fluency and mental processing speed with an XR topiramate formulation (Trokendi XR) vs IR topiramate b.i.d. These findings suggest a pharmacodynamic effect associated with significantly reducing plasma concentration fluctuation when topiramate absorption is slowed. Results of retrospective studies in migraineurs treated with XR topiramate appear to support a clinically meaningful benefit of XR topiramate vs IR topiramate in terms of significantly fewer cognitive effects, improved adherence, and overall better outcomes of migraine prophylaxis with topiramate.
Collapse
Affiliation(s)
- Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
9
|
Lyubashina OA, Panteleev SS, Sokolov AY. Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats. J Neural Transm (Vienna) 2016; 124:171-183. [PMID: 27677650 DOI: 10.1007/s00702-016-1626-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Electrical stimulation of the greater occipital nerve (GON) has recently shown promise as an effective non-pharmacological prophylactic therapy for drug-resistant chronic primary headaches, but the neurobiological mechanisms underlying its anticephalgic action are not elucidated. Considering that the spinal trigeminal nucleus (STN) is a key segmental structure playing a prominent role in pathophysiology of headaches, in the present study we evaluated the effects of GON electrical stimulation on ongoing and evoked firing of the dura-sensitive STN neurons. The experiments were carried out on urethane/chloralose-anesthetized, paralyzed and artificially ventilated male Wistar rats. Extracellular recordings were made from 11 neurons within the caudal part of the STN that received convergent input from the ipsilateral facial cutaneous receptive fields, dura mater and GON. In each experiment, five various combinations of the GON stimulation frequency (50, 75, 100 Hz) and intensity (1, 3, 6 V) were tested successively in 10 min interval. At all parameter sets, preconditioning GON stimulation (250 ms train of pulses applied before each recording) produced suppression of both the ongoing activity of the STN neurons and their responses to electrical stimulation of the dura mater. The inhibitory effect depended mostly on the GON stimulation intensity, being maximally pronounced when a stimulus of 6 V was applied. Thus, the GON stimulation-induced inhibition of trigeminovascular nociceptive processing at the level of STN has been demonstrated for the first time. The data obtained can contribute to a deeper understanding of neurophysiological mechanisms underlying the therapeutic efficacy of GON stimulation in primary headaches.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia. .,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia.
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia
| | - Alexey Y Sokolov
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia
| |
Collapse
|
10
|
Farkas B, Kardos P, Orosz S, Tarnawa I, Csekő C, Lévay G, Farkas S, Lendvai B, Kovács P. Predictive validity of endpoints used in electrophysiological modelling of migraine in the trigeminovascular system. Brain Res 2015; 1625:287-300. [DOI: 10.1016/j.brainres.2015.08.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
11
|
Abstract
Many animal models of migraine have been described. Some of them have been useful in the development of new therapies. All of them have their shortcomings. Animal models of chronic migraine have been relatively less frequently described. Whether a rigid distinction between episodic and chronic migraine is useful when their underlying pathophysiology is likely to be the same and that migraine frequency probably depends on complex polygenic influences remains to be determined. Any model of chronic migraine must reflect the chronicity of the disorder and be reliable and validated with pharmacological interventions. Future animal models of chronic migraine are likely to involve recurrent activation of the trigeminal nociceptive system. Valid models would provide a means for investigating pathophysiological mechanism of the transformation from episodic to chronic migraine and may also be used to test the efficacy of potential preventive medications.
Collapse
|
12
|
Sokolov AY, Lyubashina OA, Berkovich RR, Panteleev SS. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats. Eur J Pain 2014; 19:1086-94. [PMID: 25410439 DOI: 10.1002/ejp.631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Migraine is a chronic neurological disorder characterized by episodes of throbbing headaches. Practically all medications currently used in migraine prophylaxis have a number of substantial disadvantages and use limitations. Therefore, the further search for principally new prophylactic antimigraine agents remains an important task. The objective of our study was to evaluate the effects of a fixed combination of dextromethorphan hydrobromide and quinidine sulphate (DM/Q) on activity of the spinal trigeminal neurons in an electrophysiological model of trigemino-durovascular nociception. METHODS The study was performed in 15 male Wistar rats, which were anaesthetized with urethane/α-chloralose and paralysed using pipecuronium bromide. The effects of cumulative intravenous infusions of DM/Q (three steps performed 30 min apart, 15/7.5 mg/kg of DM/Q in 0.5 mL of isotonic saline per step) on ongoing and dural electrical stimulation-induced neuronal activities were tested in a group of eight rats over 90 min. Other seven animals received cumulative infusion of equal volumes of saline and served as control. RESULTS Cumulative administration of DM/Q produced steady suppression of both the ongoing activity of the spinal trigeminal neurons and their responses to electrical stimulation of the dura mater. CONCLUSIONS It is evident that the observed DM/Q-induced suppression of trigeminal neuron excitability can lead to a reduction in nociceptive transmission from meninges to higher centres of the brain. Since the same mechanism is believed to underlie the pharmacodynamics of many well-known antimigraine drugs, results of the present study enable us to anticipate the potential efficacy of DM/Q in migraine.
Collapse
Affiliation(s)
- A Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - O A Lyubashina
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - R R Berkovich
- Keck School of Medicine, Department of Neurology, University of Southern California, Los Angeles, USA
| | - S S Panteleev
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
13
|
Green AL, Gu P, De Felice M, Dodick D, Ossipov MH, Porreca F. Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia 2013; 34:594-604. [PMID: 24335852 DOI: 10.1177/0333102413515344] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/05/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The objective of this article is to evaluate electrically evoked thresholds for cortical spreading depression (CSD) and stress-induced activation of trigeminal afferents in a rat model of medication-overuse headache (MOH). METHODS Sumatriptan or saline was delivered subcutaneously by osmotic minipump for six days to Sprague-Dawley rats. Two weeks after pump removal, animals were anesthetized and recording/stimulating electrodes implanted. The animals were pretreated with vehicle or topiramate followed by graded electrical stimulation within the visual cortex. CSD events were identified by decreased EEG amplitude and DC potential shift. Additional unanesthetized sumatriptan or saline-pretreated rats were exposed to bright light environmental stress and periorbital and hindpaw withdrawal thresholds were measured. Following CSD stimulation or environmental stress, immunohistochemical staining for Fos in the trigeminal nucleus caudalis (TNC) was performed. RESULTS Sumatriptan pre-exposure significantly decreased electrical stimulation threshold to generate a CSD event. Topiramate normalized the decreased CSD threshold as well as stress-induced behavioral withdrawal thresholds in sumatriptan-treated rats compared to saline-treated animals. Moreover, CSD and environmental stress increased Fos expression in the TNC of sumatriptan-treated rats, and these effects were blocked by topiramate. Environmental stress did not elicit cutaneous allodynia or elevate TNC Fos expression in saline-treated rats. CONCLUSIONS A previous period of sumatriptan exposure produced long-lasting increased susceptibility to evoked CSD and environmental stress-induced activation of the TNC that was prevented by topiramate. Lowered CSD threshold, and enhanced consequences of CSD events (increased activation of TNC), may represent an underlying biological mechanism of MOH related to triptans.
Collapse
Affiliation(s)
- A Laine Green
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Pengfei Gu
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Milena De Felice
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - David Dodick
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|