1
|
Ornello R, Caponnetto V, Ahmed F, Al-Khazali HM, Ambrosini A, Ashina S, Baraldi C, Bellotti A, Brighina F, Calabresi P, Casillo F, Cevoli S, Cheng S, Chiang CC, Chiarugi A, Christensen RH, Chu MK, Coppola G, Corbelli I, Crema S, De Icco R, de Tommaso M, Di Lorenzo C, Di Stefano V, Diener HC, Ekizoğlu E, Fallacara A, Favoni V, Garces KN, Geppetti P, Goicochea MT, Granato A, Granella F, Guerzoni S, Ha WS, Hassan A, Hirata K, Hoffmann J, Hüssler EM, Hussein M, Iannone LF, Jenkins B, Labastida-Ramirez A, Laporta A, Levin M, Lupica A, Mampreso E, Martinelli D, Monteith TS, Orologio I, Özge A, Pan LLH, Panneerchelvam LL, Peres MFP, Souza MNP, Pozo-Rosich P, Prudenzano MP, Quattrocchi S, Rainero I, Romanenko V, Romozzi M, Russo A, Sances G, Sarchielli P, Schwedt TJ, Silvestro M, Swerts DB, Tassorelli C, Tessitore A, Togha M, Vaghi G, Wang SJ, Ashina M, Sacco S. Evidence-based guidelines for the pharmacological treatment of migraine. Cephalalgia 2025; 45:3331024241305381. [PMID: 40277319 DOI: 10.1177/03331024241305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
We here present evidence-based guidelines for the pharmacological treatment of migraine. These guidelines, created by the Italian Society for the Study of Headache and the International Headache Society, aim to offer clear, actionable recommendations to healthcare professionals. They incorporate evidence-based recommendations from randomized controlled trials and expert-based opinions. The guidelines follow the Grading of Recommendations, Assessment, Development and Evaluation approach for assessing the quality of evidence. The guideline development involved a systematic review of literature across multiple databases, adherence to Cochrane review methods, and a structured framework for data extraction and interpretation. Although the guidelines provide a robust foundation for migraine treatment, they also highlight gaps in current research, such as the paucity of head-to-head drug comparisons and the need for long-term outcome studies. These guidelines serve as a resource to standardize migraine treatment and promote high-quality care across different healthcare settings.
Collapse
Affiliation(s)
- Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fayyaz Ahmed
- Hull University Teaching Hospitals NHS Trust., Hull, UK
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Sait Ashina
- Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Baraldi
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Alessia Bellotti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Sabina Cevoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Shuli Cheng
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Alberto Chiarugi
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Ilenia Corbelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Santiago Crema
- Headache Clinic, Neurology Department, Fleni, Buenos Aires, Argentina
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Marina de Tommaso
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - ICOT - Latina, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | - Hans-Christoph Diener
- Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Esme Ekizoğlu
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Adriana Fallacara
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Valentina Favoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Kimberly N Garces
- Department of Neurology-Headache Division, University of Miami, Miller School of Medicine, Miami, USA
| | - Pierangelo Geppetti
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
- Department of Molecular Pathobiology and Pain Research Center, College of Dentistry, New York University, New York, USA
| | | | - Antonio Granato
- Clinical Unit of Neurology, Headache Center, Department of Medical, Surgical and Health Sciences, University Hospital and Health Services of Trieste, ASUGI, University of Trieste, Trieste, Italy
| | - Franco Granella
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology -Headache Center and Drug Abuse - Laboratory of Clinical Pharmacology and Pharmacogenomics, AOU of Modena, Modena, Italy
| | - Woo-Seok Ha
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Amr Hassan
- Department of Neurology, Kasr Al Ainy Hospitals, Faculty of Medicine, Cairo University, Egypt
| | | | - Jan Hoffmann
- Wolfson Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eva-Maria Hüssler
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany
| | - Mona Hussein
- Department of Neurology, Beni-Suef University, Beni-Suef, Egypt
| | - Luigi Francesco Iannone
- Department of Health Sciences - Section of Clinical Pharmacology and Oncology - Headache Center, Careggi University Hospital - University of Florence, Italy
| | | | - Alejandro Labastida-Ramirez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Anna Laporta
- DiBrain Department, Neurophysiopathology Unit, Bari Aldo Moro University, Bari, Italy
| | - Morris Levin
- Headache Center, University of California, San Francisco, CA, USA
| | - Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo Italy
| | | | - Daniele Martinelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Teshamae S Monteith
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Ilaria Orologio
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Aynur Özge
- Department of Neurology, Mersin University Medical School, Mersin, Turkey
| | | | | | - Mario F P Peres
- Department of Neurology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | - Patricia Pozo-Rosich
- Headache Clinic, Neurology Department, Vall d'Hebron Hospital, Barcelona, Spain; Headache and Neurological Pain Research Group, VHIR, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Prudenzano
- Headache Center, Amaducci Neurological Clinic, Polyclinic Hospital-University Consortium Bari, Italy
| | - Silvia Quattrocchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Cefalee e Algie Facciali, Bologna, Italy
| | - Innocenzo Rainero
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | | | - Marina Romozzi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Russo
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Grazia Sances
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paola Sarchielli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, USA
| | - Marcello Silvestro
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Alessandro Tessitore
- Headache Centre of Department of Advanced Medical and Surgical Sciences University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Headache Department, Neurology Ward, Sina Hospital, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science and Neurorehabilitation Unit, IRCSS Mondino Foundation, Pavia, Italy
| | - Shuu-Jiun Wang
- Department of Neurology, Taipei Veterans General Hospital, Taipei
- College of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Severance Hospital, Yonsei University, Republic of Korea
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
2
|
Rubin M, Cutillo G, Zanandrea L, Montini F, Zanetta C, Bellini A, Cecchetti G, Fanelli GF, Falini A, Scotti R, Calloni SF, Di Bella D, Filippi M, Colombo B. Crossing the border between epileptic and vascular pathology: a report of CACNA1A-related treatment-resistant hemiplegic migraine. J Neurol 2023; 270:5639-5644. [PMID: 37466662 DOI: 10.1007/s00415-023-11877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Affiliation(s)
- M Rubin
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G Cutillo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - L Zanandrea
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - F Montini
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - C Zanetta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Bellini
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Cecchetti
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - G F Fanelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Falini
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - R Scotti
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S F Calloni
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - D Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - B Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
3
|
Xiang Y, Li F, Song Z, Yi Z, Yang C, Xue J, Zhang Y. Two pediatric patients with hemiplegic migraine presenting as acute encephalopathy: case reports and a literature review. Front Pediatr 2023; 11:1214837. [PMID: 37576133 PMCID: PMC10419215 DOI: 10.3389/fped.2023.1214837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Hemiplegic migraine (HM) is a rare subtype of migraine. HM in children may be atypical in the initial stage of the disease, which could easily lead to misdiagnosis. Methods We report two cases of atypical hemiplegic migraine that onset as an acute encephalopathy. And a comprehensive search was performed using PubMed, Web of Science, and Scopus. We selected only papers that reported complete clinical information about the patients with CACNA1A or ATP1A2 gene mutation. Results Patient #1 showed a de novo mutation, c.674C>A (p. Pro225His), in exon 5 of the CACNA1A gene. And patient #2 showed a missense mutation (c.2143G>A, p. Gly715Arg) in exon 16 of the ATP1A2. Together with our two cases, a total of 160 patients (73 CACNA1A and 87 ATP1A2) were collected and summarized finally. Discussion Acute encephalopathy is the main manifestation of severe attacks of HM in children, which adds to the difficulty of diagnosis. Physicians should consider HM in the differential diagnosis of patients presenting with somnolence, coma, or convulsion without structural, epileptic, infectious, or inflammatory explanation. When similar clinical cases appear, gene detection is particularly important, which is conducive to early diagnosis and treatment. Early recognition and treatment of the disease can help improve the prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Rollo E, Romozzi M, Vollono C, Calabresi P, Geppetti P, Iannone LF. Antiseizure Medications for the Prophylaxis of Migraine during the Anti- CGRP Drugs Era. Curr Neuropharmacol 2023; 21:1767-1785. [PMID: 36582062 PMCID: PMC10514541 DOI: 10.2174/1570159x21666221228095256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/31/2022] Open
Abstract
Migraine and epilepsy are fundamentally distinct disorders that can frequently coexist in the same patient. These two conditions significantly differ in diagnosis and therapy but share some widely- used preventive treatments. Antiseizure medications (ASMs) are the mainstay of therapy for epilepsy, and about thirty different ASMs are available to date. ASMs are widely prescribed for other neurological and non-neurological conditions, including migraine. However, only topiramate and valproic acid/valproate currently have an indication for migraine prophylaxis supported by high-quality evidence. Although without specifically approved indications and with a low level of evidence or recommendation, several other ASMs are used for migraine prophylaxis. Understanding ASM antimigraine mechanisms, including their ability to affect the pro-migraine calcitonin gene-related peptide (CGRP) signaling pathway and other pathways, may be instrumental in identifying the specific targets of their antimigraine efficacy and may increase awareness of the neurobiological differences between epilepsy and migraine. Several new ASMs are under clinical testing or have been approved for epilepsy in recent years, providing novel potential drugs for migraine prevention to enrich the treatment armamentarium and drugs that inhibit the CGRP pathway.
Collapse
Affiliation(s)
- Eleonora Rollo
- Dipartimento Universitario di Neuroscienze, University Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Dipartimento Universitario di Neuroscienze, University Cattolica del Sacro Cuore, Rome, Italy
| | - Catello Vollono
- Dipartimento Universitario di Neuroscienze, University Cattolica del Sacro Cuore, Rome, Italy
- Neurofisiopatologia, Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Universitario di Neuroscienze, University Cattolica del Sacro Cuore, Rome, Italy
- Neurologia, Dipartimento di Scienze dell’invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Pierangelo Geppetti
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| | - Luigi F. Iannone
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
- Headache Center and Clinical Pharmacology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
5
|
Abstract
Hemiplegic migraine (HM) is a rare subtype of migraine with aura which prevalence is about 0.01%. The characteristic features include motor symptoms (hemiparesis) along with the signs of migraine with typical aura (visual, sensory and/or speech disturbances). The diagnosis of familial hemiplegic migraine (FHM) is established when at least 1 or more relatives of the 1st or 2nd degree in the family have the attacks of HM. This report describes a family in which two members (father and daughter) develop attacks of severe headache with nausea and, sometimes, vomiting, accompanied by visual disturbances, speech impairment, followed by unilateral numbness and weakness of extremities. The diagnosis of FHM was established. The report includes the review of literature and the discussion of some aspects of differential diagnosis.
Collapse
Affiliation(s)
| | - A A Kulesh
- Vagner Perm State Medical University, Perm, Russia
| |
Collapse
|
6
|
Buch D, Chabriat H. Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review. Headache 2019; 59:1187-1197. [PMID: 31468532 DOI: 10.1111/head.13615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Lamotrigine is not recommended in the prevention of migraine in general but some reports suggest that it might be effective for treating specifically migraine with aura (MA). This review aims to summarize the related data from the literature and to better understand this discrepancy. METHODS All reports from the literature related to the use of lamotrigine in migraine with or without aura published prior to February 2019 found using PUBMED and the 2 keywords "migraine" AND "lamotrigine" were reviewed. Original studies, published in full, systematic reviews, and all case reports were synthetized. We also examined the risk profile, pharmacokinetics, and mode of action of lamotrigine in view of the presumed mechanism of MA. RESULTS Lamotrigine was tested in different populations of migraineurs, but previous studies had small sample sizes (n < 35) and might not have been powered enough for detecting a potential benefit of lamotrigine in MA. Accumulating data suggest that the drug can reduce both the frequency and severity of aura symptoms in multiple conditions and is well tolerated. CONCLUSION Lamotrigine appears promising for treating attacks of MA and related clinical manifestations because of its high potential of efficacy, low-risk profile, and cost. Additional studies are needed for testing lamotrigine in patients with MA.
Collapse
Affiliation(s)
- Dan Buch
- Neurology Department, DHU Neuro-Vasc, Hopital Lariboisière, Paris, France
| | - Hugues Chabriat
- Neurology Department, DHU Neuro-Vasc, Hopital Lariboisière, Paris, France.,INSERM U1161, Université Denis Diderot, Paris, France
| |
Collapse
|
7
|
Diener HC, Holle-Lee D, Nägel S, Dresler T, Gaul C, Göbel H, Heinze-Kuhn K, Jürgens T, Kropp P, Meyer B, May A, Schulte L, Solbach K, Straube A, Kamm K, Förderreuther S, Gantenbein A, Petersen J, Sandor P, Lampl C. Treatment of migraine attacks and prevention of migraine: Guidelines by the German Migraine and Headache Society and the German Society of Neurology. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2019. [DOI: 10.1177/2514183x18823377] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In collaboration with some of the leading headache centres in Germany, Switzerland and Austria, we have established new guidelines for the treatment of migraine attacks and the prevention of migraine. A thorough literature research of the last 10 years has been the basis of the current recommendations. At the beginning, we present therapeutic novelties, followed by a summary of all recommendations. After an introduction, we cover topics like drug therapy and practical experience, non-effective medication, migraine prevention, interventional methods, non-medicational and psychological methods for prevention and therapies without proof of efficacy.
Collapse
Affiliation(s)
- Hans-Christoph Diener
- Klinik für Neurologie und Westdeutsches Kopfschmerzzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Dagny Holle-Lee
- Klinik für Neurologie und Westdeutsches Kopfschmerzzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Steffen Nägel
- Klinik für Neurologie und Westdeutsches Kopfschmerzzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Thomas Dresler
- Klinik für Psychiatrie und Psychotherapie, Universität Tübingen, Tübingen, Germany
- Graduiertenschule & Forschungsnetzwerk LEAD, Universität Tübingen, Tübingen, Germany
| | - Charly Gaul
- Migräne- und Kopfschmerzklinik Königstein, Königstein im Taunus, Germany
| | | | | | - Tim Jürgens
- Universitätsmedizin Rostock, Zentrum für Nervenheilkunde, Klinik und Poliklinik für Neurologie, Rostock, Germany
| | - Peter Kropp
- Institut für Medizinische Psychologie und Medizinische Soziologie, Universitätsmedizin Rostock, Zentrum für Nervenheilkunde, Rostock, Germany
| | - Bianca Meyer
- Institut für Medizinische Psychologie und Medizinische Soziologie, Universitätsmedizin Rostock, Zentrum für Nervenheilkunde, Rostock, Germany
| | - Arne May
- Institut für Systemische Neurowissenschaften, Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Laura Schulte
- Institut für Systemische Neurowissenschaften, Universitätsklinikum Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Kasja Solbach
- Klinik für Neurologie, Universitätsklinikum Essen, Essen, Germany
| | - Andreas Straube
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Klinikum Großhadern, München, Germany
| | - Katharina Kamm
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Klinikum Großhadern, München, Germany
| | - Stephanie Förderreuther
- Neurologische Klinik, Ludwig-Maximilians-Universität München, Klinikum Großhadern, München, Germany
| | | | - Jens Petersen
- Klinik für Neurologie, Universitätsspital Zürich, Zürich, Swizterland
| | - Peter Sandor
- RehaClinic Bad Zurzach, Bad Zurzach, Swizterland
| | - Christian Lampl
- Ordensklinikum Linz, Krankenhaus der Barmherzigen Schwestern Linz Betriebsgesellschaft m.b.H., Linz, Austria
| |
Collapse
|
8
|
Brusich DJ, Spring AM, James TD, Yeates CJ, Helms TH, Frank CA. Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway. PLoS Genet 2018; 14:e1007577. [PMID: 30080864 PMCID: PMC6095605 DOI: 10.1371/journal.pgen.1007577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/16/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Gain-of-function mutations in the human CaV2.1 gene CACNA1A cause familial hemiplegic migraine type 1 (FHM1). To characterize cellular problems potentially triggered by CaV2.1 gains of function, we engineered mutations encoding FHM1 amino-acid substitutions S218L (SL) and R192Q (RQ) into transgenes of Drosophila melanogaster CaV2/cacophony. We expressed the transgenes pan-neuronally. Phenotypes were mild for RQ-expressing animals. By contrast, single mutant SL- and complex allele RQ,SL-expressing animals showed overt phenotypes, including sharply decreased viability. By electrophysiology, SL- and RQ,SL-expressing neuromuscular junctions (NMJs) exhibited enhanced evoked discharges, supernumerary discharges, and an increase in the amplitudes and frequencies of spontaneous events. Some spontaneous events were gigantic (10-40 mV), multi-quantal events. Gigantic spontaneous events were eliminated by application of TTX-or by lowered or chelated Ca2+-suggesting that gigantic events were elicited by spontaneous nerve firing. A follow-up genetic approach revealed that some neuronal hyperexcitability phenotypes were reversed after knockdown or mutation of Drosophila homologs of phospholipase Cβ (PLCβ), IP3 receptor, or ryanodine receptor (RyR)-all factors known to mediate Ca2+ release from intracellular stores. Pharmacological inhibitors of intracellular Ca2+ store release produced similar effects. Interestingly, however, the decreased viability phenotype was not reversed by genetic impairment of intracellular Ca2+ release factors. On a cellular level, our data suggest inhibition of signaling that triggers intracellular Ca2+ release could counteract hyperexcitability induced by gains of CaV2.1 function.
Collapse
Affiliation(s)
- Douglas J. Brusich
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Ashlyn M. Spring
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Thomas D. James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| | - Catherine J. Yeates
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| | - Timothy H. Helms
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
9
|
Viana M, Afridi S. Migraine with prolonged aura: phenotype and treatment. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:1-7. [PMID: 29143861 DOI: 10.1007/s00210-017-1438-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023]
Abstract
We review the published literature on migraine with prolonged aura (PA), specifically with regards to the phenotype and treatment options. PA is not uncommon. A recent study found that about 17% of migraine auras are prolonged and that 26% of patients with migraine with aura have experienced at least one PA. The characteristics of PA are similar to most typical auras with the exception of a higher number of aura symptoms (in particular sensory and/or dysphasic). There are no well-established treatments at present which target the aura component of migraine. Other than case reports, there have been open-label studies of lamotrigine and greater occipital nerve blocks. The only randomised, blinded, controlled trial to date has been of nasal ketamine showing some reduction in aura severity but not duration. A small open-labelled pilot study of amiloride was also promising. Larger randomised, controlled trials are needed to establish whether any of the existing or novel compounds mentioned are significantly effective and safe.
Collapse
Affiliation(s)
- Michele Viana
- Headache Science Center, C. Mondino National Neurological Institute, Via Mondino 2, 27100, Pavia, Italy.
| | - Shazia Afridi
- Department of Neurology, Guy's and St Thomas' NHS Trust, London, UK
| |
Collapse
|
10
|
Ambrosini A, D'Onofrio M, Buzzi MG, Arisi I, Grieco GS, Pierelli F, Santorelli FM, Schoenen J. Possible Involvement of the CACNA1E Gene in Migraine: A Search for Single Nucleotide Polymorphism in Different Clinical Phenotypes. Headache 2017; 57:1136-1144. [PMID: 28573794 DOI: 10.1111/head.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To search for differences in prevalence of a CACNA1E variant between migraine without aura, various phenotypes of migraine with aura, and healthy controls. BACKGROUND Familial hemiplegic migraine type 1 (FHM1) is associated with mutations in the CACNA1A gene coding for the alpha 1A (Cav 2.1) pore-forming subunit of P/Q voltage-dependent Ca2+ channels. These mutations are not found in the common forms of migraine with or without aura. The alpha 1E subunit (Cav 2.3) is the counterpart of Cav 2.1 in R-type Ca2+ channels, has different functional properties, and is encoded by the CACNA1E gene. METHODS First, we performed a total exon sequencing of the CACNA1E gene in three probands selected because they had no abnormalities in the three FHM genes. In a patient suffering from basilar-type migraine, we identified a single nucleotide polymorphism (SNP) in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760; Minor Allele Frequency 0.2241) hitherto not studied in migraine. In a second step, we determined its occurrence in four groups by direct sequencing on blood genomic DNA: migraine patients without aura (N = 24), with typical aura (N = 55), complex neurological auras (N = 19; hemiplegic aura: N = 15; brain stem aura: N = 4), and healthy controls (N = 102). RESULTS The Asp859Glu - rs35737760 SNP of the CACNA1E gene was present in 12.7% of control subjects and in 20.4% of the total migraine group. In the migraine group it was significantly over-represented in patients with complex neurological auras (42.1%), OR 4.98 (95% CI: 1.69-14.67, uncorrected P = .005, Bonferroni P = .030, 2-tailed Fisher's exact test). There was no significant difference between migraine with typical aura (10.9%) and controls. CONCLUSIONS We identified a polymorphism in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760) that is more prevalent in hemiplegic and brain stem aura migraine. This missense variant causes a change from aspartate to glutamate at position 859 of the Cav 2.3 protein and might modulate the function of R-type Ca2+ channels. It could thus be relevant for migraine with complex neurological aura, although this remains to be proven.
Collapse
Affiliation(s)
| | - Mara D'Onofrio
- European Brain Research Institute "Rita Levi Montalcini,", Rome, Italy.,CNR, Rome, Italy
| | | | - Ivan Arisi
- European Brain Research Institute "Rita Levi Montalcini,", Rome, Italy
| | - Gaetano S Grieco
- C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| | | | | | - Jean Schoenen
- Headache Research Unit, Citadelle Hospital, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Gasparini CF, Smith RA, Griffiths LR. Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci 2016; 367:258-68. [PMID: 27423601 DOI: 10.1016/j.jns.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
Migraine is a complex polygenic disorder that continues to be a great source of morbidity in the developed world with a prevalence of 12% in the Caucasian population. Genetic and pharmacological studies have implicated the glutamate pathway in migraine pathophysiology. Glutamate profoundly impacts brain circuits that regulate core symptom domains in a range of neuropsychiatric conditions and thus remains a "hot" target for drug discovery. Glutamate has been implicated in cortical spreading depression (CSD), the phenomenon responsible for migraine with aura and in animal models carrying FHM mutations. Genotyping case-control studies have shown an association between glutamate receptor genes, namely, GRIA1 and GRIA3 with migraine with indirect supporting evidence from GWAS. New evidence localizes PRRT2 at glutamatergic synapses and shows it affects glutamate signalling and glutamate receptor activity via interactions with GRIA1. Glutamate-system defects have also been recently implicated in a novel FHM2 ATP1A2 disease-mutation mouse model. Adding to the growing evidence neurophysiological findings support a role for glutamate in cortical excitability. In addition to the existence of multiple genes to choreograph the functions of fast-signalling glutamatergic neurons, glutamate receptor diversity and regulation is further increased by the post-translational mechanisms of RNA editing and miRNAs. Ongoing genetic studies, GWAS and meta-analysis implicate neurogenic mechanisms in migraine pathology and the first genome-wide associated locus for migraine on chromosome X. Finally, in addition to glutamate modulating therapies, the kynurenine pathway has emerged as a candidate for involvement in migraine pathophysiology. In this review we discuss recent genetic evidence and glutamate modulating therapies that bear on the hypothesis that a glutamatergic mechanism may be involved in migraine susceptibility.
Collapse
Affiliation(s)
- Claudia F Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD 4222, Australia
| | - Robert A Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
12
|
|
13
|
Reed KL, Will KR, Conidi F, Bulger R. Concordant occipital and supraorbital neurostimulation therapy for hemiplegic migraine; initial experience; a case series. Neuromodulation 2015; 18:297-303; discussion 304. [PMID: 25688595 PMCID: PMC5024009 DOI: 10.1111/ner.12267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Hemiplegic migraine is a particularly severe form of the disease that often evolves to a debilitating chronic illness that is resistant to commonly available therapies. Peripheral neurostimulation has been found to be a beneficial therapy for some patients among several diagnostic classes of migraine, but its potential has not been specifically evaluated for hemiplegic migraine. MATERIALS AND METHODS Four patients with hemiplegic migraine were treated with concordant, combined occipital and supraorbital neurostimulation over periods ranging 6-92 months. The clinical indicators followed included assessments of headache frequency and severity, frequency of hemiplegic episodes, functional impairment, medication usage, and patient satisfaction. RESULTS All reported a positive therapeutic response, as their average headache frequency decreased by 92% (30 to 2.5 headache days/month); Visual Analog Score by 44% (9.5 to 5.3); frequency of hemiplegic episodes by 96% (7.5 to 0.25 hemiplegic episodes/month); headache medication usage by 96% (6 to 0.25 daily medications); and Migraine Disability Assessment score by 98% (249 to 6). All were satisfied and would recommend the therapy, and all preferred combined occipital-supraorbital neurostimulation to occipital neurostimulation alone. CONCLUSIONS Concordant combined occipital and supraorbital neurostimulation may provide effective therapy for both the pain and motor aura in some patients with hemiplegic migraine.
Collapse
Affiliation(s)
- Ken L Reed
- Interventional Pain Management and Internal Medicine, Reed Migraine Centers, Dallas, TX, USA
| | - Kelly R Will
- Interventional Pain Management, Texas Institute of Surgery, Dallas, TX, USA
| | - Frank Conidi
- Department of Neurology, Florida State University College of Medicine, West Palm Beach, FL, USA
| | - Robert Bulger
- Interventional Pain Management, Department of Anesthesiology, Presbyterian Hospital of Dallas, Dallas, TX, USA
| |
Collapse
|
14
|
Nye BL, Thadani VM. Migraine and epilepsy: review of the literature. Headache 2015; 55:359-80. [PMID: 25754865 DOI: 10.1111/head.12536] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are disorders that are common, paroxysmal, and chronic. In many ways they are clearly different diseases, yet there are some pathophysiological overlaps, and overlaps in clinical symptomatology, particularly with regard to visual and other sensory disturbances, pain, and alterations of consciousness. Epidemiological studies have revealed that the two diseases are comorbid in a number of individuals. Both are now recognized as originating from electrical disturbances in the brain, although their wider manifestations involve the recruitment of multiple pathogenic mechanisms. An initial excess of neuronal activity in migraine leads to cortical spreading depression and aura, with the subsequent recruitment of the trigeminal nucleus leading to central sensitization and pain. In epilepsy, neuronal overactivity leads to the recruitment of larger populations of neurons firing in a rhythmic manner that constitutes an epileptic seizure. Migraine aura and headaches may act as a trigger for epileptic seizures. Epilepsy is not infrequently accompanied by preictal, ictal, and postictal headaches that often have migrainous features. Genetic links are also apparent between the two disorders, and are particularly evident in the familial hemiplegic migraine syndromes where different mutations can produce either migraine, epilepsy, or both. Also, various medications are found to be effective for both migraine and epilepsy, again pointing to a commonality and overlap between the two disorders.
Collapse
Affiliation(s)
- Barbara L Nye
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | |
Collapse
|