1
|
De Schoenmacker I, Costa Marques D, Scheuren PS, Lütolf R, Gorrell LM, Mehli SC, Curt A, Rosner J, Hubli M. Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions. Clin Neurophysiol 2024; 166:31-42. [PMID: 39094528 DOI: 10.1016/j.clinph.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - David Costa Marques
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay M Gorrell
- Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| | - Sarah C Mehli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Pieniak M, Höfer B, Knipping J, Faria V, Richter M, Schriever VA, Haehner A, Gossrau G. Children and adolescents with primary headaches exhibit altered sensory profiles - a multi-modal investigation. J Headache Pain 2024; 25:111. [PMID: 38982389 PMCID: PMC11234718 DOI: 10.1186/s10194-024-01819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Pediatric headache is an increasing medical problem that has adverse effects on children's quality of life, academic performance, and social functioning. Children with primary headaches exhibit enhanced sensory sensitivity compared to their healthy peers. However, comprehensive investigations including multimodal sensory sensitivity assessment are lacking. This study aimed to compare sensory sensitivity of children with primary headaches with their healthy peers across multiple sensory domains. METHODS The study included 172 participants aged 6 to 17 years (M = 13.09, SD = 3.02 years; 120 girls). Of these 80 participants were patients with migraine, 23 were patients with tension-type headache, and 69 were healthy controls. The following sensory measures were obtained: Mechanical Detection Threshold (MDT), Mechanical Pain Threshold (MPT), Mechanical Pain Sensitivity (MPS), detection and pain threshold for Transcutaneous Electrical Nerve Stimulation (TENS), olfactory and intranasal trigeminal detection threshold, and odor identification ability. Sensory sensitivity was compared between groups with a series of Kruskal-Wallis tests. Binomial regression models were used to compare the relative utility of sensory sensitivity measures in classifying participants into patients and healthy controls, as well as into patients with migraine and tension-type headache. RESULTS Patients with migraine had lower MPT measured at the forearm than patients with tension-type headaches and healthy controls. MPS was higher in patients with migraine than in healthy controls. All patients with headaches had lower detection threshold of TENS and higher olfactory sensitivity. Healthy controls showed increased intranasal trigeminal sensitivity. Scores in MPS, TENS, and olfactory and trigeminal thresholds were significantly predicting presence of primary headaches. Additionally, scores in MPT, olfactory and trigeminal threshold were positive predictors of type of headache. CONCLUSIONS Children with primary headaches exhibit different sensory profiles than healthy controls. The obtained results suggest presence of increased overall, multimodal sensitivity in children with primary headaches, what may negatively impact daily functioning and contribute to further pain chronification. TRIAL REGISTRATION The study was registered in the German Registry of Clinical Trials (DRKS) DRKS00021062.
Collapse
Affiliation(s)
- Michal Pieniak
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, University Hospital, TU Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wroclaw, Poland
| | - Berit Höfer
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Jenny Knipping
- Department of Pediatric Neurology, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Vanda Faria
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
| | - Matthias Richter
- Department of Pediatrics, Faculty of Medicine Carl Gustav Carus, University Hospital, Dresden, TU, Germany
| | - Valentin A Schriever
- Department of Pediatric Neurology, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany
- Department of Pediatrics, Pediatric Neurology, Neurometabolics and Prevention, Goethe University Frankfurt, Frankfurt, Germany
| | - Antje Haehner
- Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Smell & Taste Clinic, University Hospital, TU Dresden, Dresden, Germany
| | - Gudrun Gossrau
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Dresden, Germany.
- Interdisciplinary Pain Center, Faculty of Medicine Carl Gustav Carus, University Hospital, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Fernández-Cuadros ME, Martín-Martín LM, Albaladejo-Florín MJ, Pérez-Moro OS, Goizueta-San-Martín G. [Sensitivity of the sympathetic skin response and scintigraphy in the diagnosis of complex regional pain syndrome]. Rehabilitacion (Madr) 2024; 58:100807. [PMID: 37862774 DOI: 10.1016/j.rh.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 01/19/2023] [Accepted: 04/25/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE To evaluate the sensitivity of sympathetic skin response (SSR) and compare it with scintigraphy in patients with complex regional pain syndrome diagnosed according to the Budapest criteria. MATERIAL AND METHODS Twenty-two patients with complex regional pain syndrome who attended the Rehabilitation and Physical Medicine Department between January-2018 and May-2022 have been prospectively evaluated. The scintigraphy was considered positive if in the 1st-2nd phase slight asymmetric and diffuse uptake was observed, or when in the 3rd phase marked periarticular radioisotope uptake was observed. SSR was abnormal if: a) no response after 20 stimuli; b) lack of habituation with permanence of the stimuli greater than 67.2%. RESULTS Age 55.4±8.57 years. Complex regional pain syndrome was more frequent in women (90.9%), more common in upper limbs (68.2%) than lower limbs (31.8%). In SSR, we have observed normal response (<67.2%) in 2 patients (11.1%), lack of SSR in 2 patients (11.1%) and lack of habituation (>67.2%) in 14 patients (77.8%). In total, 16 patients presented abnormal or absent responses (88.8%). The diagnostic sensitivity of scintigraphy is similar to that of SSR (89.5% vs 88.8%), with no statistical difference (P=.6721). CONCLUSION Scintigraphy has shown similar sensitivity to SSR, although the simplicity, security, low cost, non-ionizing and non-invasiveness of the latter technique suggest that it could be more cost-effective. The lack of habituation and the absence of response could identify response patterns and localize the involvement in the afferent, central, efferent or post-ganglionic pathways.
Collapse
Affiliation(s)
- M E Fernández-Cuadros
- Servicio de Rehabilitación y Medicina Física, Hospital Universitario Santa Cristina, Madrid, España.
| | - L M Martín-Martín
- Servicio de Neurofisiología Clínica, Hospital Universitario Santa Cristina, Madrid, España
| | - M J Albaladejo-Florín
- Servicio de Rehabilitación y Medicina Física, Hospital Universitario Santa Cristina, Madrid, España
| | - O S Pérez-Moro
- Servicio de Rehabilitación y Medicina Física, Hospital Universitario Santa Cristina, Madrid, España
| | - G Goizueta-San-Martín
- Servicio de Neurofisiología Clínica, Hospital Universitario Santa Cristina, Madrid, España
| |
Collapse
|
4
|
Asci F, Di Stefano G, Di Santo A, Bianchini E, Leone C, La Cesa S, Zampogna A, Cruccu G, Suppa A. Pain-motor integration in chronic pain: A neurophysiological study. Clin Neurophysiol 2023; 154:107-115. [PMID: 37595480 DOI: 10.1016/j.clinph.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Chronic pain may lead to functional changes in several brain regions, including the primary motor cortex (M1). Our neurophysiological study aimed to probe M1 plasticity, through a non-invasive transcranial magnetic stimulation protocol, in a cohort of patients with chronic pain. METHODS Twenty patients with chronic pain (age ± SD: 62.9 ± 9.9) and 20 age- and sex-matched healthy controls (age ± SD: 59.6 ± 15.8) were recruited. Standardized scales were used for the evaluation of pain severity. Neurophysiological measures included laser-evoked potentials (LEPs) and motor-evoked potentials (MEPs) collected at baseline and over 60 minutes following a standardized Laser-paired associative stimulation (Laser-PAS) protocol. RESULTS LEPs and MEPs were comparable in patients with chronic pain and controls. The pain threshold was lower in patients than in controls. Laser-PAS elicited decreased responses in patients with chronic pain. The response to Laser-PAS was similar in subgroups of patients with different chronic pain phenotypes. CONCLUSIONS M1 plasticity, as tested by Laser-PAS, is altered in patients with chronic pain, possibly reflecting abnormal pain-motor integration processes. SIGNIFICANCE Chronic pain is associated with a disorder of M1 plasticity raising from abnormal pain-motor integration.
Collapse
Affiliation(s)
- Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Alessandro Di Santo
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Caterina Leone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Silvia La Cesa
- Unit of Neurology, S. Camillo-Forlanini Hospital, Rome, Italy.
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
5
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Bell T, Khaira A, Stokoe M, Webb M, Noel M, Amoozegar F, Harris AD. Age-related differences in resting state functional connectivity in pediatric migraine. J Headache Pain 2021; 22:65. [PMID: 34229614 PMCID: PMC8259418 DOI: 10.1186/s10194-021-01274-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine affects roughly 10% of youth aged 5-15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. METHODS Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7-15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. RESULTS We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. CONCLUSIONS We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - Akashroop Khaira
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Megan Webb
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Farnaz Amoozegar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Altamura C, Corbelli I, de Tommaso M, Di Lorenzo C, Di Lorenzo G, Di Renzo A, Filippi M, Jannini TB, Messina R, Parisi P, Parisi V, Pierelli F, Rainero I, Raucci U, Rubino E, Sarchielli P, Li L, Vernieri F, Vollono C, Coppola G. Pathophysiological Bases of Comorbidity in Migraine. Front Hum Neurosci 2021; 15:640574. [PMID: 33958992 PMCID: PMC8093831 DOI: 10.3389/fnhum.2021.640574] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite that it is commonly accepted that migraine is a disorder of the nervous system with a prominent genetic basis, it is comorbid with a plethora of medical conditions. Several studies have found bidirectional comorbidity between migraine and different disorders including neurological, psychiatric, cardio- and cerebrovascular, gastrointestinal, metaboloendocrine, and immunological conditions. Each of these has its own genetic load and shares some common characteristics with migraine. The bidirectional mechanisms that are likely to underlie this extensive comorbidity between migraine and other diseases are manifold. Comorbid pathologies can induce and promote thalamocortical network dysexcitability, multi-organ transient or persistent pro-inflammatory state, and disproportionate energetic needs in a variable combination, which in turn may be causative mechanisms of the activation of an ample defensive system with includes the trigeminovascular system in conjunction with the neuroendocrine hypothalamic system. This strategy is designed to maintain brain homeostasis by regulating homeostatic needs, such as normal subcortico-cortical excitability, energy balance, osmoregulation, and emotional response. In this light, the treatment of migraine should always involves a multidisciplinary approach, aimed at identifying and, if necessary, eliminating possible risk and comorbidity factors.
Collapse
Affiliation(s)
- Claudia Altamura
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Ilenia Corbelli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, SMBNOS Department, Bari Aldo Moro University, Policlinico General Hospital, Bari, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS-Fondazione Santa Lucia, Rome, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso B Jannini
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Messina
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Faculty of Medicine & Psychology, c/o Sant'Andrea Hospital, Sapienza University, Rome, Italy
| | | | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,Headache Clinic, IRCCS-Neuromed, Pozzilli, Italy
| | - Innocenzo Rainero
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Umberto Raucci
- Department of Emergency, Acceptance and General Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Elisa Rubino
- Neurology I, Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Paola Sarchielli
- Clinica Neurologica, Dipartimento di Medicina, Ospedale S.M. Misericordia, Università degli Studi di Perugia, Perugia, Italy
| | - Linxin Li
- Nuffield Department of Clinical Neurosciences, Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Fabrizio Vernieri
- Headache and Neurosonology Unit, Neurology, Campus Bio-Medico University Hospital, Rome, Italy
| | - Catello Vollono
- Department of Neurology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Catholic University, Rome, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
8
|
Dynamic Causal Modelling of the Reduced Habituation to Painful Stimuli in Migraine: An EEG Study. Brain Sci 2020; 10:brainsci10100712. [PMID: 33036334 PMCID: PMC7601741 DOI: 10.3390/brainsci10100712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023] Open
Abstract
A consistent finding in migraine is reduced cortical habituation to repetitive sensory stimuli. This study investigated brain dynamics underlying the atypical habituation to painful stimuli in interictal migraine. We investigated modulations in effective connectivity between the sources of laser evoked potentials (LEPs) from a first to final block of trigeminal LEPs using dynamic causal modelling (DCM) in a group of 23 migraine patients and 20 controls. Additionally, we looked whether the strength of dynamical connections in the migrainous brain is initially different. The examined network consisted of the secondary somatosensory areas (lS2, rS2), insulae (lIns, rIns), anterior cingulate cortex (ACC), contralateral primary somatosensory cortex (lS1), and a hidden source assumed to represent the thalamus. Results suggest that migraine patients show initially heightened communication between lS1 and the thalamus, in both directions. After repetitive stimulations, connection strengths from the thalamus to all somatosensory areas habituated in controls whereas this was not apparent in migraine. Together with further abnormalities in initial connectivity strengths and modulations between the thalamus and the insulae, these results are in line with altered thalamo-cortical network dynamics in migraine. Group differences in connectivity from and to the insulae including interhemispheric connections, suggests an important role of the insulae.
Collapse
|
9
|
de Tommaso M, Betti V, Bocci T, Bolognini N, Di Russo F, Fattapposta F, Ferri R, Invitto S, Koch G, Miniussi C, Piccione F, Ragazzoni A, Sartucci F, Rossi S, Arcara G, Berchicci M, Bianco V, Delussi M, Gentile E, Giovannelli F, Mannarelli D, Marino M, Mussini E, Pauletti C, Pellicciari MC, Pisoni A, Raggi A, Valeriani M. Pearls and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part I. Neurol Sci 2020; 41:2711-2735. [PMID: 32388645 DOI: 10.1007/s10072-020-04420-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Event-related potentials (ERPs) are obtained from the electroencephalogram (EEG) or the magnetoencephalogram (MEG, event-related fields (ERF)), extracting the activity that is time-locked to an event. Despite the potential utility of ERP/ERF in cognitive domain, the clinical standardization of their use is presently undefined for most of procedures. The aim of the present review is to establish limits and reliability of ERP medical application, summarize main methodological issues, and present evidence of clinical application and future improvement. The present section of the review focuses on well-standardized ERP methods, including P300, Contingent Negative Variation (CNV), Mismatch Negativity (MMN), and N400, with a chapter dedicated to laser-evoked potentials (LEPs). One section is dedicated to proactive preparatory brain activity as the Bereitschaftspotential and the prefrontal negativity (BP and pN). The P300 and the MMN potentials have a limited but recognized role in the diagnosis of cognitive impairment and consciousness disorders. LEPs have a well-documented usefulness in the diagnosis of neuropathic pain, with low application in clinical assessment of psychophysiological basis of pain. The other ERP components mentioned here, though largely applied in normal and pathological cases and well standardized, are still confined to the research field. CNV, BP, and pN deserve to be largely tested in movement disorders, just to explain possible functional changes in motor preparation circuits subtending different clinical pictures and responses to treatments.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy
| | - Tommaso Bocci
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico, Milan, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | | | - Sara Invitto
- INSPIRE - Laboratory of Cognitive and Psychophysiological Olfactory Processes, University of Salento, Lecce, Italy
| | - Giacomo Koch
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Neuroscience, Policlinico Tor Vergata, Rome, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.,Cognitive Neuroscience Section, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Aldo Ragazzoni
- Unit of Neurology and Clinical Neurophysiology, Fondazione PAS, Scandicci, Florence, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, Pisa, Italy
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience Siena Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Siena, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valentina Bianco
- IRCCS Fondazione Santa Lucia (Santa Lucia Foundation), Rome, Italy.,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit-AnpLab-University of Bari Aldo Moro, Bari, Italy
| | - Fabio Giovannelli
- Section of Psychology - Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Daniela Mannarelli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Marco Marino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Elena Mussini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Caterina Pauletti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, Milan, Italy
| | - Alberto Raggi
- Unit of Neurology, G.B. Morgagni - L. Pierantoni Hospital, Forlì, Italy
| | - Massimiliano Valeriani
- Neurology Ward Unit, Bambino Gesù Hospital, Rome, Italy. .,Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
10
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
11
|
Sciruicchio V, Simeone M, Foschino Barbaro MG, Tanzi RC, Delussi MD, Libro G, D'Agnano D, Basiliana R, de Tommaso M. Pain Catastrophizing in Childhood Migraine: An Observational Study in a Tertiary Headache Center. Front Neurol 2019; 10:114. [PMID: 30828315 PMCID: PMC6384232 DOI: 10.3389/fneur.2019.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/29/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Migraine is the most common cause of primary headache in children leading to a decrease in the quality of life. During the last decade, pain catastrophizing construct became a major focus of interest in the study and treatment of pain. Aim of the study:To evaluate pain catastrophizing in episodic and chronic migraine children and adolescents selected in a tertiary headache Center. To test whether the children's pain catastrophizing might be associated (a) with the frequency of attacks and disability (b) with psychopathological aspects (c) with allodynia and total tenderness score as symptom of central sensitization. To test the best discriminating clinical variables and scores between episodic and chronic migraine, including pain catastrophizing.
Methods: We conducted a cross sectional observational study on consecutive pediatric patients affected by migraine. We selected 190 headache patients who met the diagnostic criteria for Migraine without aura, Migraine with aura and Chronic migraine. We submitted all children to the Child version of the Pain Catastrophizing Scale (PCS-C), and to the disability scale for migraine (PedMIDAS), general quality of life estimated by children (PedsQL) and parents (PedsQL-P), anxiety and depression (SAFA-A; SAFA-D) scales. We also evaluated headache frequency and the presence and severity of allodynia and pericranial tenderness. Results: No difference was detected in Total Pain Catastrophizing score (PCS-C) between chronic and episodic migraine groups (ANOVA F = 0.59, p = 0.70); the PedMIDAS, the PedsQL-P for physical functioning and the Total Tenderness Score were discriminant variables between episodic and chronic migraine. The PCS-C was not correlated with migraine related disability as expressed by Ped MIDAS, but it was significantly correlated with general low quality of life, allodynia, pericranial tenderness, anxiety, and depression. Conclusion: Pain catastrophizing seems a mental characteristic of a clinical phenotype with psychopathological traits and enhanced expression of central sensitization symptoms. This clinical profile causes general decline in quality of life in the child judgment, with a probable parents' underestimation. In childhood age, it would not be a feature of chronic migraine, but the possibility that it could predict this evolution is consistent and worthy of further prospective evaluation.
Collapse
Affiliation(s)
| | - Michele Simeone
- Associazione Italiana di Psicoterapia Cognitiva S.r.l (AIPC), Bari, Italy
| | - Maria Grazia Foschino Barbaro
- Associazione Italiana di Psicoterapia Cognitiva S.r.l (AIPC), Bari, Italy.,Psychological Pediatric Service, Policlinico General Hospital, Bari, Italy
| | | | - Marianna D Delussi
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System Department, Policlinico General Hospital, Bari Aldo Moro University, Bari, Italy
| | - Giuseppe Libro
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System Department, Policlinico General Hospital, Bari Aldo Moro University, Bari, Italy
| | | | | | - Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Basic Medical, Neuroscience and Sensory System Department, Policlinico General Hospital, Bari Aldo Moro University, Bari, Italy
| |
Collapse
|
12
|
Russo A, Coppola G, Pierelli F, Parisi V, Silvestro M, Tessitore A, Tedeschi G. Pain Perception and Migraine. Front Neurol 2018; 9:576. [PMID: 30116215 PMCID: PMC6082953 DOI: 10.3389/fneur.2018.00576] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Background: It is well-known that both inter- and intra-individual differences exist in the perception of pain; this is especially true in migraine, an elusive pain disorder of the head. Although electrophysiology and neuroimaging techniques have greatly contributed to a better understanding of the mechanisms involved in migraine during recent decades, the exact characteristics of pain threshold and pain intensity perception remain to be determined, and continue to be a matter of debate. Objective: The aim of this review is to provide a comprehensive overview of clinical, electrophysiological, and functional neuroimaging studies investigating changes during various phases of the so-called “migraine cycle” and in different migraine phenotypes, using pain threshold and pain intensity perception assessments. Methods: A systematic search for qualitative studies was conducted using search terms “migraine,” “pain,” “headache,” “temporal summation,” “quantitative sensory testing,” and “threshold,” alone and in combination (subject headings and keywords). The literature search was updated using the additional keywords “pain intensity,” and “neuroimaging” to identify full-text papers written in English and published in peer-reviewed journals, using PubMed and Google Scholar databases. In addition, we manually searched the reference lists of all research articles and review articles. Conclusion: Consistent data indicate that pain threshold is lower during the ictal phase than during the interictal phase of migraine or healthy controls in response to pressure, cold and heat stimuli. There is evidence for preictal sub-allodynia, whereas interictal results are conflicting due to either reduced or no observed difference in pain threshold. On the other hand, despite methodological limitations, converging observations support the concept that migraine attacks may be characterized by an increased pain intensity perception, which normalizes between episodes. Nevertheless, future studies are required to longitudinally evaluate a large group of patients before and after pharmacological and non-pharmacological interventions to investigate phases of the migraine cycle, clinical parameters of disease severity and chronic medication usage.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, G. B. Bietti Foundation-IRCCS, Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, G. B. Bietti Foundation-IRCCS, Rome, Italy
| | - Marcello Silvestro
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, Headache Center, University of Campania "Luigi Vanvitelli, ", Naples, Italy.,MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli,", Naples, Italy.,Institute for Diagnosis and Care "Hermitage Capodimonte," Naples, Italy
| |
Collapse
|
13
|
Quantitative sensory testing in patients with migraine: a systematic review and meta-analysis. Pain 2018; 159:1202-1223. [DOI: 10.1097/j.pain.0000000000001231] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Guy N, Voisin D, Mulliez A, Clavelou P, Dallel R. Medication overuse reinstates conditioned pain modulation in women with migraine. Cephalalgia 2017; 38:1148-1158. [DOI: 10.1177/0333102417727545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study investigated the effects of medication overuse and withdrawal on modulation of pain processing in women with migraine. Temporal summation of laser-evoked thermal pain was used to measure the effects of conditioned pain modulation. Methods 36 female participants (12 healthy volunteers, 12 with episodic migraine and 12 with medication overuse headache) were included in a two session protocol. Medication overuse headache subjects were also tested three weeks after medication overuse headache withdrawal. Mechanical and laser-evoked thermal pain thresholds were measured on the back of the non-dominant hand where, later, temporal summation of laser-evoked thermal pain to repetitive thermal stimuli was elicited for 30 min, at an intensity producing moderate pain. Between the 10th and 20th minutes, the contralateral foot was immersed into a water bath at a not painful (30℃) or painfully cold (8℃; conditioned pain modulation) temperature. Results Episodic migraine, medication overuse headache and medication overuse headache withdrawal were associated with an increase in extracephalic temporal summation of laser-evoked thermal pain as compared to healthy volunteer subjects, while there was no alteration of laser-evoked thermal and mechanical extracephalic pain thresholds in these subjects. Conditioned pain modulation was highly efficient in temporal summation of laser-evoked thermal pain in healthy volunteer subjects, with a solid post-effect (reduction of pain). Conditioned pain modulation was still present, but reduced, in episodic migraine. By contrast, conditioned pain modulation was normal in medication overuse headache and strongly reduced in medication overuse headache withdrawal. Furthermore, in medication overuse headache withdrawal, the post-effect was no longer a decrease, but a facilitation of pain. Conclusions These data show that a decrease in conditioned pain modulation does not underlie medication overuse headache in women. On the contrary, medication overuse reinstated conditioned pain modulation in female migraine patients. They also identify different phenotypes of pain modulation in migraine patients. Registration number N° 2008-A00471-54.
Collapse
Affiliation(s)
- Nathalie Guy
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Daniel Voisin
- Neurocentre Magendie, Inserm U1215, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | | | - Pierre Clavelou
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| | - Radhouane Dallel
- Université Clermont Auvergne, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Clermont-Ferrand, France
- Inserm U1107, Neuro-Dol, Clermont-Ferrand, France
| |
Collapse
|
15
|
Symptoms of central sensitization and comorbidity for juvenile fibromyalgia in childhood migraine: an observational study in a tertiary headache center. J Headache Pain 2017; 18:59. [PMID: 28560539 PMCID: PMC5449358 DOI: 10.1186/s10194-017-0764-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022] Open
Abstract
Background Central sensitization is an important epiphenomenon of the adult migraine, clinically expressed by allodynia, pericranial tenderness and comorbidity for fibromyalgia in a relevant number of patients. This study aimed to evaluate the frequency and the clinical characteristics of allodynia, pericranial tenderness, and comorbidity for Juvenile Fibromialgia (JFM) in a cohort of migraine children selected in a tertiary headache center. Methods This was an observational cross-sectional study on 8–15 years old migraine patients. Allodynia was assessed by a questionnaire. Pericranial tenderness and comorbidity for JFM as well as their possible association with poor quality of life and migraine related disability, and with other clinical symptoms as anxiety, depression, sleep disorders and pain catastrophizing, were also evaluated. Results One hundred and fifty one patients were selected, including chronic migraine (n°47), migraine without aura (n° 92) and migraine with aura (n° 12) sufferers. Allodynia was reported in the 96,6% and pericranial tenderness was observed in the 68.8% of patients. Pericranial tenderness was more severe in patients with more frequent migraine and shorter sleep duration. Allodynia seemed associated with anxiety, pain catastrophizing and high disability scores. Comorbidity for JFM was present in the 0.03% ofpatients. These children presented with a severe depression and a significant reduction of quality of life as compared to the other patients. Conclusions This study outlined a relevant presence of symptoms of central sensitization among children with migraine. Severe allodynia and comorbidity for JFM seemed to cause a general decline of quality of life, which would suggest the opportunity of a routine assessment of these clinical features.
Collapse
|
16
|
Perrotta A, Anastasio MG, De Icco R, Coppola G, Ambrosini A, Serrao M, Sandrini G, Pierelli F. Frequency-Dependent Habituation Deficit of the Nociceptive Blink Reflex in Aura With Migraine Headache. Can Migraine Aura Modulate Trigeminal Excitability? Headache 2017; 57:887-898. [PMID: 28488755 DOI: 10.1111/head.13111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To study the influence of the migraine aura on the trigeminal nociception, we investigated the habituation of the nociceptive blink reflex (nBR) R2 responses in aura with migraine headache (AwMH) and comparatively in migraine without aura (MWoA) and healthy subjects (HS). BACKGROUND A clear deficit of habituation in trigeminal nociceptive responses has been documented in MWoA; however, similar data in MWA are lacking. METHODS Seventeen AwMH, 29 MWoA, and 30 HS were enrolled and a nonrandomized clinical neurophysiological study examining nBR habituation by clinical diagnosis was devised. We delivered a series of 26 electrical stimuli, at different stimulation frequencies (SF) (0.05, 0.1, 0.2, 0.3, 0.5, and 1 Hz), subsequently subdivided in five blocks of five responses for each SF. The mean area values of the second to the fifth block expressed as the percentage of the mean area value of the first block were taken as an index of habituation for each SF. RESULTS A significant lower mean percentage decrease of the R2 area across all blocks was found at 1, 0.5, 0.3, and 0.2 Hz SF in MWoA and at 0.3 and 0.2 Hz SF in AwMH, when compared to HS. In the most representative fifth block of responses, we found in MWoA vs HS at 1 Hz, 57.0 ± 27.8 vs 30.6 ± 12.0; at 0.5 Hz, 54.8 ± 26.1 vs 32.51 ± 17.7; at 0.3 Hz, 44.7 ± 21.6 vs 27.6 ± 13.2; at 0.2 Hz, 61.3 ± 29.5 vs 32.6 ± 18.0, and in AwMH vs HS at 0.3 Hz, 52.7 ± 24.7 vs 27.6 ± 13.2; at 0.2 Hz, 69.3 ± 38.6 vs 32.6 ± 18.0 as mean ± SD of the R2 area percentage of the first block, respectively. Interestingly, AwMH subjects did not show differences in mean percentage decrease of the R2 area at 1 and 0.5 Hz SF when compared to HS. No differences between groups were found at 0.1 and 0.05 Hz SF. CONCLUSIONS We demonstrated in AwMH a deficit of habituation of the nBR R2 responses after repeated stimulations, although less pronounced than that observed in MWoA of comparable clinical severity. We hypothesize that AwMH and MWoA share some pathogenetic aspects, and also that migraine aura physiopathology may play a modulating role on the excitability of the nociceptive trigeminal pathways.
Collapse
Affiliation(s)
| | - Maria Grazia Anastasio
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Roberto De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Gianluca Coppola
- Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | | | - Mariano Serrao
- Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - Giorgio Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Francesco Pierelli
- IRCCS Neuromed, Pozzilli, IS, Italy.,Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| |
Collapse
|
17
|
de Tommaso M, Ricci K, Montemurno A, Vecchio E. Age-related changes in laser-evoked potentials following trigeminal and hand stimulation in healthy subjects. Eur J Pain 2017; 21:1087-1097. [DOI: 10.1002/ejp.1010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- M. de Tommaso
- Department of Basic Medical Science; Neuroscience and Sensory System (SMBNOS); Neurophysiopathology of Pain Unit; University of Bari Aldo Moro; Bari Italy
| | - K. Ricci
- Department of Basic Medical Science; Neuroscience and Sensory System (SMBNOS); Neurophysiopathology of Pain Unit; University of Bari Aldo Moro; Bari Italy
| | - A. Montemurno
- Department of Basic Medical Science; Neuroscience and Sensory System (SMBNOS); Neurophysiopathology of Pain Unit; University of Bari Aldo Moro; Bari Italy
| | - E. Vecchio
- Department of Basic Medical Science; Neuroscience and Sensory System (SMBNOS); Neurophysiopathology of Pain Unit; University of Bari Aldo Moro; Bari Italy
| |
Collapse
|
18
|
Effects of OnabotulintoxinA on Habituation of Laser Evoked Responses in Chronic Migraine. Toxins (Basel) 2016; 8:toxins8060163. [PMID: 27231940 PMCID: PMC4926130 DOI: 10.3390/toxins8060163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023] Open
Abstract
Onabotulintoxin A (BontA) is an efficacious preventive treatment for chronic migraine, though the specific mechanism of action is still under discussion. The study aims: (1) To evaluate pain processing modifications in chronic migraine patients (CM) under single BontA administration in pericranial muscles, by means of CO2 Laser Evoked Potentials (LEPs) obtained by the stimulation of the skin over the right frontal and trapezius injection sites and hand dorsum, in a double blind placebo controlled crossover design. (2) To correlate main LEPs findings with clinical outcome after one year of BontA treatment. Twenty refractory CM patients were included in the analysis. The LEPs were recorded in basal conditions and seven days after BontA (PREEMPT protocol) and saline solution injection. The N1, N2 and P2 amplitude and latencies and N2P2 habituation index were evaluated and correlated with the percent change of headache frequency after one year of toxin treatment. After seven days of BontA treatment, a normalization of the trigeminal habituation index was observed, which was correlated with the clinical outcome after one year of BontA therapy. Patients displaying trigeminal LEPs facilitation at T0 time showed a more efficient therapeutic outcome. Neurotoxin may exert a modulating effect on trigeminal nociception, normalizing central neurotransmission.
Collapse
|
19
|
de Tommaso M, Trotta G, Vecchio E, Ricci K, Van de Steen F, Montemurno A, Lorenzo M, Marinazzo D, Bellotti R, Stramaglia S. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine. Front Hum Neurosci 2015; 9:640. [PMID: 26635589 PMCID: PMC4656845 DOI: 10.3389/fnhum.2015.00640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023] Open
Abstract
In previous studies, migraine patients showed abnormalities in pain-related evoked responses, as reduced habituation to repetitive stimulation. In this study, we aimed to apply a novel analysis of EEG bands synchronization and directed dynamical influences under painful stimuli in migraine patients compared to non-migraine healthy volunteers. Thirty-one migraine without aura outpatients (MIGR) were evaluated and compared to 19 controls (CONT). The right hand was stimulated by means of 30 consecutive CO2 laser stimuli. EEG signal was examined by means of Morlet wavelet, synchronization entropy (SE), and Granger causality (GC), and the statistically validated results were mapped on the corresponding scalp locations. The vertex complex of averaged laser-evoked responses (LEPs) showed reduced habituation compared to CONT. In the prestimulus phase, enhanced SE in the 0, 5–30 Hz range was present in MIGR and CONT between the bilateral temporal–parietal and the frontal regions around the midline. Migraine patients showed an anticipation of EEG changes preceding the painful stimulation compared to CONT. In the poststimulus phase, the same cortical areas were more connected in MIGR vs CONT. In both groups of patients and CONT, the habituation index was negatively correlated with the GC scores. A different pattern of cortical activation after painful stimulation was present in migraine. The increase in cortical connections during repetitive painful stimulation may subtend the phenomenon of LEPs reduced habituation. Brain network analysis may give an aid in understanding subtle changes of pain processing under laser stimuli in migraine patients.
Collapse
Affiliation(s)
- Marina de Tommaso
- Basic Medical Neuroscience and Sensory System Department, Bari Aldo Moro University , Bari , Italy ; TIRES Center, Bari Aldo Moro University , Bari , Italy
| | - Gabriele Trotta
- TIRES Center, Bari Aldo Moro University , Bari , Italy ; Physics Department, Istituto Nazionale Di Fisica Nucleare Sezione di Bari, Bari Aldo Moro University , Bari , Italy
| | - Eleonora Vecchio
- Basic Medical Neuroscience and Sensory System Department, Bari Aldo Moro University , Bari , Italy ; TIRES Center, Bari Aldo Moro University , Bari , Italy
| | - Katia Ricci
- Basic Medical Neuroscience and Sensory System Department, Bari Aldo Moro University , Bari , Italy ; TIRES Center, Bari Aldo Moro University , Bari , Italy
| | - Frederik Van de Steen
- Data Analysis Department, Faculty of Psychological and Pedagogical Sciences 1, Ghent University , Ghent , Belgium
| | - Anna Montemurno
- Basic Medical Neuroscience and Sensory System Department, Bari Aldo Moro University , Bari , Italy ; TIRES Center, Bari Aldo Moro University , Bari , Italy
| | - Marta Lorenzo
- Basic Medical Neuroscience and Sensory System Department, Bari Aldo Moro University , Bari , Italy ; TIRES Center, Bari Aldo Moro University , Bari , Italy
| | - Daniele Marinazzo
- Data Analysis Department, Faculty of Psychological and Pedagogical Sciences 1, Ghent University , Ghent , Belgium
| | - Roberto Bellotti
- TIRES Center, Bari Aldo Moro University , Bari , Italy ; Physics Department, Istituto Nazionale Di Fisica Nucleare Sezione di Bari, Bari Aldo Moro University , Bari , Italy
| | - Sebastiano Stramaglia
- TIRES Center, Bari Aldo Moro University , Bari , Italy ; Physics Department, Istituto Nazionale Di Fisica Nucleare Sezione di Bari, Bari Aldo Moro University , Bari , Italy ; BCAM Basque Center for Applied Mathematics , Bilbao , Spain
| |
Collapse
|