1
|
Viganò A, Sasso D’Elia T, Sava SL, Colosimo A, Di Piero V, Magis D, Schoenen J. Exploring the Therapeutic Potential of Quadripulse rTMS over the Visual Cortex: A Proof-of-Concept Study in Healthy Volunteers and Chronic Migraine Patients with Medication Overuse Headache. Biomedicines 2024; 12:288. [PMID: 38397890 PMCID: PMC10886990 DOI: 10.3390/biomedicines12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
In chronic migraine with medication overuse (CM-MOH), sensitization of visual cortices is reflected by (i) increased amplitude of stimulus-evoked responses and (ii) habituation deficit during repetitive stimulation. Both abnormalities might be mitigated by inhibitory transcranial neurostimulation. Here, we tested an inhibitory quadripulse repetitive transcranial magnetic stimulation (rTMS-QPI) protocol to decrease durably visual cortex excitability in healthy subjects (HS) and explored its therapeutic potential in CM-MOH patients. Pattern-reversal visual evoked potentials (VEP) were used as biomarkers of effect and recorded before (T1), immediately after (T2), and 3 h after stimulation (T3). In HS, rTMS-QPI durably decreased the VEP 1st block amplitude (p < 0.05) and its habituation (p < 0.05). These changes were more pronounced for the P1N2 component that was modified already at T2 up to T3, while for N1P1 they were significant only at T3. An excitatory stimulation protocol (rTMS-QPE) tended to have an opposite effect, restricted to P1N2. In 12 CM-MOH patients, during a four-week treatment (2 sessions/week), rTMS-QPI significantly reduced monthly headache days (p < 0.01). In patients reversing from CM-MOH to episodic migraine (n = 6), VEP habituation significantly improved after treatment (p = 0.005). rTMS-QPI durably decreases visual cortex responsivity in healthy subjects. In a proof-of-concept study of CM-MOH patients, rTMS-QPI also has beneficial clinical and electrophysiological effects, but sham-controlled trials are needed.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
| | - Tullia Sasso D’Elia
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- IRCCS San Raffaele Alla Pisana, 00163 Rome, Italy
| | - Simona Liliana Sava
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- Headache Clinic of Valdor—ISOSL, 4020 Liège, Belgium
| | - Alfredo Colosimo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics Sapienza, Sapienza—University of Rome, 00185 Rome, Italy
| | - Vittorio Di Piero
- Subintensive Neurology & Headache Centre, Department of Human Neurosciences, Sapienza—University of Rome, 00185 Rome, Italy
| | - Delphine Magis
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
- Neurology Department and Pain Clinic (CMTD), CHR East Belgium, 4800 Verviers, Belgium
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology, University of Liège, Citadelle Hospital, 4000 Liège, Belgium
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Chronic migraine (CM) affects a large proportion of the population and is a significant source of disability and lost productivity. Numerous non-pharmacological approaches have been attempted during the past decades. This review discusses the most recent and evidence-based advances in acute and preventive non-pharmacological therapeutic approaches for CM, offering alternatives to drug treatment. RECENT FINDINGS A growing number of non-pharmacological treatment options, including non-invasive or invasive neuromodulation, acupuncture, psychotherapy, and physiotherapy, have shown promising efficacy in CM. There is strong evidence for the effectiveness of non-invasive neuromodulation such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcutaneous electrical nerve stimulation (TENS) in CM, but less evidence for approaches such as invasive neuromodulation, physical therapy, or dietary approaches. Acupuncture for migraine remains controversial, with the main point of contention still being the placebo effect. Non-pharmacological approaches can be offered as a reliable alternative for patients with CM, and more research is being done to evaluate the efficacy of non-invasive neuromodulation with different parameters and the combination of different treatments in CM.
Collapse
Affiliation(s)
- Xun Han
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
3
|
Puledda F, Viganò A, Sebastianelli G, Parisi V, Hsiao FJ, Wang SJ, Chen WT, Massimini M, Coppola G. Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms: A narrative review. Cephalalgia 2023; 43:3331024231195780. [PMID: 37622421 DOI: 10.1177/03331024231195780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory unified theory. METHODS We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials. We summarized the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnormalities underlying migraine recurrence. RESULTS All electrophysiological modalities have determined specific changes in brain dynamics across the different phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuromodulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, non-painful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal phases. CONCLUSION Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamus-cortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genetically determined dysfunctions of the synaptic short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Fu-Jung Hsiao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
4
|
Kalita J, Laskar S, Sachan A. Topographic localization of migraine triggers and its association with headache frequency and severity. Clin Neurol Neurosurg 2023; 230:107794. [PMID: 37229952 DOI: 10.1016/j.clineuro.2023.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Internal biological rhythm with or without external trigger may precipitate migraine. Classifying exogenous and endogenous triggers to a topographic localization may help in understanding the migraine. We report topographic localization of migraine triggers and its influence on headache frequency and severity. METHODS 588 migraineurs, aged 16-69 years were included. Various endogenous and exogenous triggers were categorized to topographic localization- hypothalamic, pituitary, auditory, visual, somato-sensory, olfactory and gustatory. The relationship of topographic localization of triggers with episodic versus chronic migraine, and moderate versus severe headache were analyzed using univariate followed by multivariate analysis. RESULTS All migraineurs had triggers 584(99.9%) except 4(0.1%) patients. Presence of multiple triggers (99.4%), and combination of both endogenous and exogenous triggers (97.7%) was the rule. On topographic localization, hypothalamic trigger was the commonest (98.1%) followed by visual (84.1%), auditory (82.1%), somatosensory (76.1%), olfactory (26.2%), pituitary (24.1%), and gustatory (6.6%). 98.6% patients had combination of hypothalamic with pituitary triggers. Hypothalamic [Adjusted odds ratio (AOR) 4.50] and auditory triggers (AOR 0.34) independently predicted chronic migraine, and auditory (AOR 0.55) and gustatory (AOR 2.41) triggers predicted severity of headache. CONCLUSION Hypothalamic triggers are the commonest suggesting an innate susceptibility of migraine. Auditory trigger may precipitate frequent and severe headache.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India.
| | - Sanghamitra Laskar
- Department of Neurology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi 110 029, India
| | - Abhishek Sachan
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
5
|
Jiang W, Isenhart R, Liu CY, Song D. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents. J Neural Eng 2023; 20:026022. [PMID: 36863013 PMCID: PMC10037933 DOI: 10.1088/1741-2552/acc097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States of America
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Coppola G, Ambrosini A. What has neurophysiology revealed about migraine and chronic migraine? HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:117-133. [PMID: 38043957 DOI: 10.1016/b978-0-12-823356-6.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Since the first electroencephalographic recordings obtained by Golla and Winter in 1959, researchers have used a variety of neurophysiological techniques to determine the mechanisms underlying recurrent migraine attacks. Neurophysiological methods have shown that the brain during the interictal phase of an episodic migraine is characterized by a general hyperresponsiveness to sensory stimuli, a malfunction of the monoaminergic brainstem circuits, and by functional alterations of the thalamus and thalamocortical loop. All of these alterations vary plastically during the phases of the migraine cycle and interictally with the days following the attack. Both episodic migraineurs recorded during an attack and chronic migraineurs are characterized by a general increase in the cortical amplitude response to peripheral sensory stimuli; this is an electrophysiological hallmark of a central sensitization process that is further reinforced through medication overuse. Considering the large-scale functional involvement and the main roles played by the brainstem-thalamo-cortical network in selection, elaboration, and learning of relevant sensory information, future research should move from searching for one specific primary site of dysfunction at the macroscopic level, to the chronic, probably genetically determined, molecular dysfunctions at the synaptic level, responsible for short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Latina, Italy
| | | |
Collapse
|
7
|
Hermann JK, Borseth A, Pucci FG, Toth C, Hogue O, Chan HH, Machado AG, Baker KB. Changes in somatosensory evoked potentials elicited by lateral cerebellar nucleus deep brain stimulation in the naïve rodent. Neurosci Lett 2022; 786:136800. [PMID: 35842210 DOI: 10.1016/j.neulet.2022.136800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) of the deep cerebellar nuclei has been shown to enhance perilesional cortical excitability and promote motor rehabilitation in preclinical models of cortical ischemia and is currently being evaluated in patients with chronic, post-stroke deficits. Understanding the effects of cerebellar DBS on contralateral sensorimotor cortex may be key to developing approaches to optimize stimulation delivery and treatment outcomes. Using the naïve rat model, we characterized the effects of DBS of the lateral cerebellar nucleus (LCN) on somatosensory evoked potentials (SSEPs) and evaluated their potential use as a surrogate index of cortical excitability. SSEPs were recorded concurrently with continuous 30 Hz or 100 Hz LCN DBS and compared to the DBS OFF condition. Ratios of SSEP peak to peak amplitude during 100 Hz LCN DBS to DBS OFF at longer latency peaks were significantly>1, suggesting that cortical excitability was enhanced as a result of LCN DBS. Although changes in SSEP peak to peak amplitudes were observed, they were modest in relation to previously reported effects on motor cortical excitability. Overall, our findings suggest that LCN output influences thalamocortical somatosensory pathways, however further work is need to better understand the potential role of SSEPs in optimizing therapy.
Collapse
Affiliation(s)
- John K Hermann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Ashley Borseth
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Francesco G Pucci
- Center for Neurologic Restoration, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Carmen Toth
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Hugh H Chan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Andre G Machado
- Center for Neurologic Restoration, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States; Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States.
| |
Collapse
|
8
|
Zang Y, Zhang Y, Lai X, Yang Y, Guo J, Gu S, Zhu Y. Evidence Mapping Based on Systematic Reviews of Repetitive Transcranial Magnetic Stimulation on the Motor Cortex for Neuropathic Pain. Front Hum Neurosci 2022; 15:743846. [PMID: 35250506 PMCID: PMC8889530 DOI: 10.3389/fnhum.2021.743846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There is vast published literature proposing repetitive transcranial magnetic stimulation (rTMS) technology on the motor cortex (M1) for the treatment of neuropathic pain (NP). Systematic reviews (SRs) focus on a specific problem and do not provide a comprehensive overview of a research area. This study aimed to summarize and analyze the evidence of rTMS on the M1 for NP treatment through a new synthesis method called evidence mapping. METHODS Searches were conducted in PubMed, EMBASE, Epistemonikos, and The Cochrane Library to identify the studies that summarized the effectiveness of rTMS for NP. The study type was restricted to SRs with or without meta-analysis. All literature published before January 23, 2021, was included. Two reviewers independently screened the literature, assessed the methodological quality, and extracted the data. The methodological quality of the included SRs was assessed by using the A Measurement Tool to Assess Systematic Reviews (AMSTAR-2). Data were extracted following a defined population, intervention, comparison, and outcome (PICO) framework from primary studies that included SRs. The same PICO was categorized into PICOs according to interventions [frequency, number of sessions (short: 1-5 sessions, medium: 5-10 sessions, and long: >10 sessions)] and compared. The evidence map was presented in tables and a bubble plot. RESULTS A total of 38 SRs met the eligibility criteria. After duplicate primary studies were removed, these reviews included 70 primary studies that met the scope of evidence mapping. According to the AMSTAR-2 assessment, the quality of the included SRs was critically low. Of these studies, 34 SRs scored "critically low" in terms of methodological quality, 2 SR scored "low," 1 SR scored "moderate," and 1 SR scored "high." CONCLUSION Evidence mapping is a useful methodology to provide a comprehensive and reliable overview of studies on rTMS for NP. Evidence mapping also shows that further investigations are necessary to highlight the optimal stimulation protocols and standardize all parameters to fill the evidence gaps of rTMS. Given that the methodological quality of most included SRs was "critically low," further investigations are advised to improve the methodological quality and the reporting process of SRs.
Collapse
Affiliation(s)
- Yaning Zang
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongni Zhang
- School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Xigui Lai
- Department of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yujie Yang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences Limited, Hong Kong, Hong Kong SAR, China
| | - Jiabao Guo
- Department of Rehabilitation Medicine, The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Gu
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Yi Zhu
- Department of Musculoskeletal Pain Rehabilitation, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Coppola G, Magis D, Casillo F, Sebastianelli G, Abagnale C, Cioffi E, Di Lenola D, Di Lorenzo C, Serrao M. Neuromodulation for Chronic Daily Headache. Curr Pain Headache Rep 2022; 26:267-278. [PMID: 35129825 PMCID: PMC8927000 DOI: 10.1007/s11916-022-01025-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/29/2022]
Abstract
Purpose of Review We reviewed the literature that explored the use of central and peripheral neuromodulation techniques for chronic daily headache (CDH) treatment. Recent Findings Although the more invasive deep brain stimulation (DBS) is effective in chronic cluster headache (CCH), it should be reserved for extremely difficult-to-treat patients. Percutaneous occipital nerve stimulation has shown similar efficacy to DBS and is less risky in both CCH and chronic migraine (CM). Non-invasive transcutaneous vagus nerve stimulation is a promising add-on treatment for CCH but not for CM. Transcutaneous external trigeminal nerve stimulation may be effective in treating CM; however, it has not yet been tested for cluster headache. Transcranial magnetic and electric stimulations have promising preventive effects against CM and CCH. Summary Although the precise mode of action of non-invasive neuromodulation techniques remains largely unknown and there is a paucity of controlled trials, they should be preferred to more invasive techniques for treating CDH.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
| | - Delphine Magis
- Headache and Pain Multimodal Treatment Centre (CMTCD), Department of Neurology, Neuromodulation Centre, CHR East Belgium, Verviers, Belgium
| | - Francesco Casillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Chiara Abagnale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| |
Collapse
|
10
|
du Plessis S, Oni IK, Lapointe AP, Campbell C, Dunn JF, Debert CT. Treatment of Persistent Post-Concussion Syndrome with Repetitive Transcranial Magnetic Stimulation Using Functional Near-Infrared Spectroscopy as a Biomarker of Response: A Randomized Sham-Controlled Clinical Trial Protocol (Preprint). JMIR Res Protoc 2021; 11:e31308. [PMID: 35315783 PMCID: PMC8984821 DOI: 10.2196/31308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
Background Approximately one-third of all concussions lead to persistent postconcussion syndrome (PPCS). Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that has been extensively used to treat refractory major depressive disorder and has a strong potential to be used as a treatment for patients with PPCS. Functional near-infrared spectroscopy (fNIRS) has already been used as a tool to assess patients with PPCS and may provide insight into the pathophysiology of rTMS treatment in patients with PPCS. Objective The primary objective of this research is to determine whether rTMS treatment improves symptom burden in patients with PPCS compared to sham treatment using the Rivermead postconcussion symptom questionnaire. The secondary objective is to explore the neuropathophysiological changes that occur following rTMS in participants with PPCS using fNIRS. Exploratory objectives include determining whether rTMS treatment in participants with PPCS will also improve quality of life, anxiety, depressive symptoms, cognition, posttraumatic stress, and function secondary to headaches. Methods A total of 44 adults (18-65 years old) with PPCS (>3 months to 5 years) will participate in a double-blind, sham-controlled, concealed allocation, randomized clinical trial. The participants will engage in either a 4-week rTMS treatment protocol or sham rTMS protocol (20 treatments). The left dorsolateral prefrontal cortex will be located through Montreal Neurologic Institute coordinates. The intensity of the rTMS treatment over the left dorsolateral prefrontal cortex will be 120% of resting motor threshold, with a frequency of 10 Hz, 10 trains of 60 pulses per train (total of 600 pulses), and intertrain interval of 45 seconds. Prior to starting the rTMS treatment, participant and injury characteristics, questionnaires (symptom burden, quality of life, depression, anxiety, cognition, and headache), and fNIRS assessment will be collected. Repeat questionnaires and fNIRS will occur immediately after rTMS treatment and at 1 month and 3 months post rTMS. Outcome parameters will be analyzed by a 2-way (treatment × time) mixed analysis of variance. Results As of May 6, 2021, 5 participants have been recruited for the study, and 3 have completed the rTMS protocol. The estimated completion date of the trial is May 2022. Conclusions This trial will expand our knowledge of how rTMS can be used as a treatment option of PPCS and will explore the neuropathophysiological response of rTMS through fNIRS analysis. Trial Registration ClinicalTrials.gov NCT04568369; https://clinicaltrials.gov/ct2/show/NCT04568369 International Registered Report Identifier (IRRID) DERR1-10.2196/31308
Collapse
Affiliation(s)
- Sané du Plessis
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Ibukunoluwa K Oni
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew P Lapointe
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Campbell
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Calgary, AB, Canada
| |
Collapse
|
11
|
Shankar AK, Javali M, Mehta A, Pradeep R, Mahale R, Acharya P, Srinivasa R. Role of High Frequency Oscillations of Somatosensory Evoked Potentials in Deciphering Pathophysiology of Migraine. J Neurosci Rural Pract 2021; 12:12-15. [PMID: 33531754 PMCID: PMC7846343 DOI: 10.1055/s-0040-1716793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background
Habituation deficit is considered as a neurophysiological abnormality among migraineurs in the interictal period. For clear comprehension and clarity about the mechanism underlying habituation in migraine, a sophisticated method, i.e., high frequency oscillations (HFOs) evoked potentials, have been utilized. However, studies pertaining to this in the Indian context are rare.
Objective
The aim of the study is to determine the utility of HFO of somatosensory evoked potential (SSEP) in deciphering the pathophysiology of migraine.
Materials and Methods
Sixty subjects including 30 migraineurs in the interictal period and 30 healthy controls were considered for the study. Median nerve SSEP was recorded in patients and controls by standard protocols. HFO was extracted offline using the Digital zero-phase shift band-pass filtering at 450 and 750 Hz. The early and late HFOs were determined with respect to the N20 peak and were compared between the groups.
Results
Of total 30 migraineurs, 18 had hemicranial headache and 12 had holocranial headache. N20 latency, P25 latency, N20 onset to peak amplitude, and N20 onset to P25 amplitude were comparable in migraineurs and controls. The intraburst frequency of early HFOs in migraineurs was significantly higher (
p
= 0.04), whereas the peak-to-peak amplitude was significantly lower (
p
= 0.001).
Conclusion
Early HFOs on SSEP represent the thalamocortical excitatory drive in migraineurs. Overall, the study reports that reduced amplitude of early HFOs in the interictal period suggest reduced thalamocortical drive in migraineurs.
Collapse
Affiliation(s)
- Abhinandan K Shankar
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Mahendra Javali
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Anish Mehta
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - R Pradeep
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Rohan Mahale
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Purushottam Acharya
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Rangasetty Srinivasa
- Department of neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Stilling J, Paxman E, Mercier L, Gan LS, Wang M, Amoozegar F, Dukelow SP, Monchi O, Debert C. Treatment of Persistent Post-Traumatic Headache and Post-Concussion Symptoms Using Repetitive Transcranial Magnetic Stimulation: A Pilot, Double-Blind, Randomized Controlled Trial. J Neurotrauma 2019; 37:312-323. [PMID: 31530227 DOI: 10.1089/neu.2019.6692] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent post-traumatic headache (PTH) after mild traumatic brain injury is one of the most prominent and highly reported persistent post-concussion symptoms (PPCS). Non-pharmacological treatments, including non-invasive neurostimulation technologies, have been proposed for use. Our objective was to evaluate headache characteristics at 1 month after repetitive transcranial magnetic stimulation (rTMS) treatment in participants with PTH and PPCS. A double-blind, randomized, sham-controlled, pilot clinical trial was performed on 20 participants (18-65 years) with persistent PTH (International Classification of Headache Disorders, 3rd edition) and PPCS (International Classification of Diseases, Tenth Revision). Ten sessions of rTMS therapy (10 Hz, 600 pulses, 70% resting motor threshold amplitude) were delivered to the left dorsolateral pre-frontal cortex. The primary outcome was a change in headache frequency or severity at 1 month post-rTMS. Two-week-long daily headache diaries and clinical questionnaires assessing function, PPCS, cognition, quality of life, and mood were completed at baseline, post-treatment, and at 1, 3, and 6 months post-rTMS. A two-way (treatment × time) mixed analyisis of variance indicated a significant overall time effect for average headache severity (F(3,54) = 3.214; p = 0.03) and a reduction in headache frequency at 1 month post-treatment (#/2 weeks, REAL -5.2 [standard deviation {SD} = 5.8]; SHAM, -3.3 [SD = 7.7]). Secondary outcomes revealed an overall time interaction for headache impact, depression, post-concussion symptoms, and quality of life. There was a significant reduction in depression rating in the REAL group between baseline and 1 month post-treatment, with no change in the SHAM group (Personal Health Questionnaire-9; REAL, -4.3 [SD = 3.7[ p = 0.020]; SHAM, -0.7 [SD = 4.7; p = 1.0]; Bonferroni corrected). In the REAL group, 60% returned to work whereas only 10% returned in the SHAM group (p = 0.027). This pilot study demonstrates an overall time effect on headache severity, functional impact, depression, PPCS, and quality of life after rTMS treatment in participants with persistent PTH; however, findings were below clinical significance thresholds. There was a 100% response rate, no dropouts, and minimal adverse effects, warranting a larger phase II study. Clinicaltrials.gov: NCT03691272.
Collapse
Affiliation(s)
- Joan Stilling
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Eric Paxman
- University of Calgary, Calgary, Alberta, Canada.,University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Leah Mercier
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Liu Shi Gan
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Meng Wang
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Farnaz Amoozegar
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Sean P Dukelow
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Oury Monchi
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Chantel Debert
- University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
13
|
|
14
|
Viganò A, Toscano M, Puledda F, Di Piero V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front Pharmacol 2019; 10:32. [PMID: 30804782 PMCID: PMC6370938 DOI: 10.3389/fphar.2019.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic migraine (CM) is the most disabling form of migraine, because pharmacological treatments have low efficacy and cumbersome side effects. New evidence has shown that migraine is primarily a disorder of brain plasticity and migraine chronification depends on a maladaptive process favoring the development of a brain state of hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option in migraine field. On one side, NIBS techniques induce changes of neural plasticity that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic migraine treatment, concurrently they allow targeting neurophysiological abnormalities that contribute to the transition from episodic to CM. The action may thus influence not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not burdened by serious medication side effects and drug–drug interactions. Although the majority of the studies reported somewhat beneficial effects in migraine patients, no standard intervention has been defined. This may be due to methodological differences regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial direct current stimulation), the brain regions chosen as targets, and the stimulation types (e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales), and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion on the real effect of neuromodulation in migraine. In this article, we first will review the definition and mechanisms of brain plasticity, some neurophysiological hallmarks of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review available results from therapeutic and physiological studies using neuromodulation in CM. Lastly we will discuss the results obtained in these preventive trials in the light of a possible effect on brain plasticity.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College Hospital, King's College London, London, United Kingdom
| | - Vittorio Di Piero
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,University Consortium for Adaptive Disorders and Head Pain - UCADH, Pavia, Italy
| |
Collapse
|
15
|
Stilling JM, Monchi O, Amoozegar F, Debert CT. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache 2019; 59:339-357. [DOI: 10.1111/head.13479] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Joan M. Stilling
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Oury Monchi
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Farnaz Amoozegar
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| | - Chantel T. Debert
- Clinical Neurosciences University of Calgary Calgary AB, Canada
- Cumming School of Medicine University of Calgary Calgary AB, Canada
- Hotchkiss Brain Institute Calgary AB, Canada
| |
Collapse
|