1
|
Lisicki M, Schoenen J. What is the evolutionary disadvantage of migraine? Cephalalgia 2025; 45:3331024251327361. [PMID: 40170397 DOI: 10.1177/03331024251327361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Affiliation(s)
- Marco Lisicki
- Headache Research Laboratory, Mercedes and Martín Ferreyra Institute for Medical Research (INIMEC), National Scientific and Technical Research Council (CONICET), National University of Córdoba, Cordoba, Argentina
- Biomedical Physics Department, School of Medicine, National University of Córdoba (UNC), Córdoba, Argentina
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Liège, Belgium
- Giga-Neurosciences, Neuroanatomy, University of Liège, CHU Sart Tilman-B23, Liège, Belgium
| |
Collapse
|
2
|
Puledda F, Viganò A, Sebastianelli G, Parisi V, Hsiao FJ, Wang SJ, Chen WT, Massimini M, Coppola G. Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms: A narrative review. Cephalalgia 2023; 43:3331024231195780. [PMID: 37622421 DOI: 10.1177/03331024231195780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND The cyclical brain disorder of sensory processing accompanying migraine phases lacks an explanatory unified theory. METHODS We searched Pubmed for non-invasive neurophysiological studies on migraine and related conditions using transcranial magnetic stimulation, electroencephalography, visual and somatosensory evoked potentials. We summarized the literature, reviewed methods, and proposed a unified theory for the pathophysiology of electrophysiological abnormalities underlying migraine recurrence. RESULTS All electrophysiological modalities have determined specific changes in brain dynamics across the different phases of the migraine cycle. Transcranial magnetic stimulation studies show unbalanced recruitment of inhibitory and excitatory circuits, more consistently in aura, which ultimately results in a substantially distorted response to neuromodulation protocols. Electroencephalography investigations highlight a steady pattern of reduced alpha and increased slow rhythms, largely located in posterior brain regions, which tends to normalize closer to the attacks. Finally, non-painful evoked potentials suggest dysfunctions in habituation mechanisms of sensory cortices that revert during ictal phases. CONCLUSION Electrophysiology shows dynamic and recurrent functional alterations within the brainstem-thalamus-cortex loop varies continuously and recurrently in migraineurs. Given the central role of these structures in the selection, elaboration, and learning of sensory information, these functional alterations suggest chronic, probably genetically determined dysfunctions of the synaptic short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Francesca Puledda
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | | | - Fu-Jung Hsiao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
3
|
Coppola G, Ambrosini A. What has neurophysiology revealed about migraine and chronic migraine? HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:117-133. [PMID: 38043957 DOI: 10.1016/b978-0-12-823356-6.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Since the first electroencephalographic recordings obtained by Golla and Winter in 1959, researchers have used a variety of neurophysiological techniques to determine the mechanisms underlying recurrent migraine attacks. Neurophysiological methods have shown that the brain during the interictal phase of an episodic migraine is characterized by a general hyperresponsiveness to sensory stimuli, a malfunction of the monoaminergic brainstem circuits, and by functional alterations of the thalamus and thalamocortical loop. All of these alterations vary plastically during the phases of the migraine cycle and interictally with the days following the attack. Both episodic migraineurs recorded during an attack and chronic migraineurs are characterized by a general increase in the cortical amplitude response to peripheral sensory stimuli; this is an electrophysiological hallmark of a central sensitization process that is further reinforced through medication overuse. Considering the large-scale functional involvement and the main roles played by the brainstem-thalamo-cortical network in selection, elaboration, and learning of relevant sensory information, future research should move from searching for one specific primary site of dysfunction at the macroscopic level, to the chronic, probably genetically determined, molecular dysfunctions at the synaptic level, responsible for short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Latina, Italy
| | | |
Collapse
|
4
|
Aczél T, Benczik B, Ágg B, Körtési T, Urbán P, Bauer W, Gyenesei A, Tuka B, Tajti J, Ferdinandy P, Vécsei L, Bölcskei K, Kun J, Helyes Z. Disease- and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: role of inflammatory signalling and oxidative stress. J Headache Pain 2022; 23:113. [PMID: 36050647 PMCID: PMC9438144 DOI: 10.1186/s10194-022-01478-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a primary headache with genetic susceptibility, but the pathophysiological mechanisms are poorly understood, and it remains an unmet medical need. Earlier we demonstrated significant differences in the transcriptome of migraineurs' PBMCs (peripheral blood mononuclear cells), suggesting the role of neuroinflammation and mitochondrial dysfunctions. Post-transcriptional gene expression is regulated by miRNA (microRNA), a group of short non-coding RNAs that are emerging biomarkers, drug targets, or drugs. MiRNAs are emerging biomarkers and therapeutics; however, little is known about the miRNA transcriptome in migraine, and a systematic comparative analysis has not been performed so far in migraine patients. METHODS We determined miRNA expression of migraineurs' PBMC during (ictal) and between (interictal) headaches compared to age- and sex-matched healthy volunteers. Small RNA sequencing was performed from the PBMC, and mRNA targets of miRNAs were predicted using a network theoretical approach by miRNAtarget.com™. Predicted miRNA targets were investigated by Gene Ontology enrichment analysis and validated by comparing network metrics to differentially expressed mRNA data. RESULTS In the interictal PBMC samples 31 miRNAs were differentially expressed (DE) in comparison to healthy controls, including hsa-miR-5189-3p, hsa-miR-96-5p, hsa-miR-3613-5p, hsa-miR-99a-3p, hsa-miR-542-3p. During headache attacks, the top DE miRNAs as compared to the self-control samples in the interictal phase were hsa-miR-3202, hsa-miR-7855-5p, hsa-miR-6770-3p, hsa-miR-1538, and hsa-miR-409-5p. MiRNA-mRNA target prediction and pathway analysis indicated several mRNAs related to immune and inflammatory responses (toll-like receptor and cytokine receptor signalling), neuroinflammation and oxidative stress, also confirmed by mRNA transcriptomics. CONCLUSIONS We provide here the first evidence for disease- and headache-specific miRNA signatures in the PBMC of migraineurs, which might help to identify novel targets for both prophylaxis and attack therapy.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás Körtési
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pécs, Hungary.
- PharmInVivo Ltd., Pécs, Hungary.
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti út 12, 7624, Pécs, Hungary.
| |
Collapse
|
5
|
Liu TH, Wang Z, Xie F, Liu YQ, Lin Q. Contributions of aversive environmental stress to migraine chronification: Research update of migraine pathophysiology. World J Clin Cases 2021; 9:2136-2145. [PMID: 33850932 PMCID: PMC8017499 DOI: 10.12998/wjcc.v9.i9.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have suggested that internal and/or external aversive cues may produce a negative affective-motivational component whereby maladaptive responses (plasticity) of dural afferent neurons are initiated contributing to migraine chronification. However, pathophysiological processes and neural circuitry involved in aversion (unpleasantness)-producing migraine chronification are still evolving. An interdisciplinary team conducted this narrative review aimed at reviewing neuronal plasticity for developing migraine chronicity and its relevant neurocircuits and providing the most cutting-edge information on neuronal mechanisms involved in the processing of affective aspects of pain and the role of unpleasantness evoked by internal and/or external cues in facilitating the chronification process of migraine headache. Thus, information presented in this review promotes the understanding of the pathophysiology of chronic migraine and contribution of unpleasantness (aversion) to migraine chronification. We hope that it will bring clinicians’ attention to how the maladaptive neuroplasticity of the emotion brain in the aversive environment produces a significant impact on the chronification of migraine headache, which will in turn lead to new therapeutic strategies for this type of pain.
Collapse
Affiliation(s)
- Tang-Hua Liu
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Zhen Wang
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Fang Xie
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Yan-Qing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qing Lin
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
6
|
Lisicki M, Figuerola ML, Bonamico L, Lew D, Goicochea MT. The prevalence of migraine in Argentina: A reappraisal. Cephalalgia 2021; 41:821-826. [PMID: 33525905 DOI: 10.1177/0333102421989262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Argentina has one of the largest territories in the world, which spreads over a lengthy latitudinal span. Its population is mainly composed of a mixture of South American natives and the descendants of numerous waves of European immigrants. Results from a previous study suggested that the prevalence of migraine in Argentina is the lowest in the region. Here we aimed to reassess the prevalence of migraine in Argentina applying a more sensitive and specific screening tool. METHODS We conducted a random computer assisted telephonic interview (n= 2500) using the Migraine Screen Questionnaire to evaluate the prevalence of migraine and some of its features among Argentinian adults. RESULTS The overall prevalence of migraine was 9.5% (14% in females and 5% in males). Estimated migraine prevalence rates ranged between 6.3% and 12% across different regions. The approximated prevalence of high frequency and chronic migraine were 1.9% and 1.5% of the total population respectively. Consumption of analgesics on 10 or more days per month was reported by 18% of migraine sufferers (≈1.7% of the population). CONCLUSIONS The prevalence of migraine in Argentina is higher than previously reported. Prevalence rates vary extensively across the territory. Specifically evaluating the determinants of these variations might be a promising avenue of research.
Collapse
Affiliation(s)
- Marco Lisicki
- Neuroscience Unit, Conci·Carpinella Institute, Córdoba, Argentina
| | - María L Figuerola
- Neurology Division, Clinical Hospital, University of Buenos Aires, Buenos Aires, Argentina.,Neurology Department, German Hospital, Buenos Aires, Argentina
| | - Lucas Bonamico
- Sección Cefaleas, Servicio de Dolor, Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Daniel Lew
- CEMIC and Hospital Austral Division of Family Medicine, Buenos Aires, Argentina
| | - María T Goicochea
- Sección Cefaleas, Servicio de Dolor, Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Recent Insights in Migraine With Aura: A Narrative Review of Advanced Neuroimaging. Headache 2019; 59:637-649. [DOI: 10.1111/head.13512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
8
|
Marucco E, Lisicki M, Magis D. Electrophysiological Characteristics of the Migraine Brain: Current Knowledge and Perspectives. Curr Med Chem 2018; 26:6222-6235. [PMID: 29956611 DOI: 10.2174/0929867325666180627130811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite pain being its most prominent feature, migraine is primarily a disorder of sensory processing. Electrophysiology-based research in the field has consistently developed over the last fifty years. OBJECTIVE To summarize the current knowledge on the electrophysiological characteristics of the migraine brain, and discuss perspectives. METHODS We critically reviewed the literature on the topic to present and discuss articles selected on the basis of their significance and/or novelty. RESULTS Physiologic fluctuations within time, between-subject differences, and methodological issues account as major limitations of electrophysiological research in migraine. Nonetheless, several abnormalities revealed through different approaches have been described in the literature. Altogether, these results are compatible with an abnormal state of sensory processing. PERSPECTIVES The greatest contribution of electrophysiological testing in the future will most probably be the characterization of sub-groups of migraine patients sharing specific electrophysiological traits. This should serve as strategy towards personalized migraine treatment. Incorporation of novel methods of analysis would be worthwhile.
Collapse
Affiliation(s)
- Erica Marucco
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Marco Lisicki
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Delphine Magis
- Centre Hospitalier Universitaire de Liege - Headache Research Unit Liege, Liege, Belgium
| |
Collapse
|