1
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
2
|
Tsirelis D, Tsekouras A, Stamati P, Liampas I, Zoupa E, Dastamani M, Tsouris Z, Papadimitriou A, Dardiotis E, Siokas V. The impact of genetic factors on the response to migraine therapy. Rev Neurosci 2024; 35:789-812. [PMID: 38856190 DOI: 10.1515/revneuro-2024-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient's genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients' life quality in the vision of precise medicine.
Collapse
Affiliation(s)
- Daniil Tsirelis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Alexandros Tsekouras
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Elli Zoupa
- Larisa Day Care Center of People with Alzheimer's Disease, Association for Regional Development and Mental Health (EPAPSY), 15124 Marousi, Greece
| | - Metaxia Dastamani
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | | | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
3
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
4
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
5
|
Johnson EC, Salvatore JE, Lai D, Merikangas AK, Nurnberger JI, Tischfield JA, Xuei X, Kamarajan C, Wetherill L, Rice JP, Kramer JR, Kuperman S, Foroud T, Slesinger PA, Goate AM, Porjesz B, Dick DM, Edenberg HJ, Agrawal A. The collaborative study on the genetics of alcoholism: Genetics. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12856. [PMID: 37387240 PMCID: PMC10550788 DOI: 10.1111/gbb.12856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
This review describes the genetic approaches and results from the family-based Collaborative Study on the Genetics of Alcoholism (COGA). COGA was designed during the linkage era to identify genes affecting the risk for alcohol use disorder (AUD) and related problems, and was among the first AUD-focused studies to subsequently adopt a genome-wide association (GWAS) approach. COGA's family-based structure, multimodal assessment with gold-standard clinical and neurophysiological data, and the availability of prospective longitudinal phenotyping continues to provide insights into the etiology of AUD and related disorders. These include investigations of genetic risk and trajectories of substance use and use disorders, phenome-wide association studies of loci of interest, and investigations of pleiotropy, social genomics, genetic nurture, and within-family comparisons. COGA is one of the few AUD genetics projects that includes a substantial number of participants of African ancestry. The sharing of data and biospecimens has been a cornerstone of the COGA project, and COGA is a key contributor to large-scale GWAS consortia. COGA's wealth of publicly available genetic and extensive phenotyping data continues to provide a unique and adaptable resource for our understanding of the genetic etiology of AUD and related traits.
Collapse
Affiliation(s)
- Emma C. Johnson
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Jessica E. Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical SchoolRutgers UniversityPiscatawayNew JerseyUSA
| | - Dongbing Lai
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Alison K. Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - John I. Nurnberger
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Xiaoling Xuei
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral SciencesState University of New York Health Sciences UniversityBrooklynNew YorkUSA
| | - Leah Wetherill
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - John P. Rice
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - John R. Kramer
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Samuel Kuperman
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Tatiana Foroud
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Paul A. Slesinger
- Departments of Neuroscience and Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alison M. Goate
- Departments of Genetics and Genomic Sciences, Neuroscience, and NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral SciencesState University of New York Health Sciences UniversityBrooklynNew YorkUSA
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical SchoolRutgers UniversityPiscatawayNew JerseyUSA
| | - Howard J. Edenberg
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana UniversityIndianapolisIndianaUSA
| | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
6
|
Shan Z, Wang Y, Qiu T, Zhou Y, Zhang Y, Hu L, Zhang L, Liang J, Ding M, Fan S, Xiao Z. SS-31 alleviated nociceptive responses and restored mitochondrial function in a headache mouse model via Sirt3/Pgc-1α positive feedback loop. J Headache Pain 2023; 24:65. [PMID: 37271805 DOI: 10.1186/s10194-023-01600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/23/2023] [Indexed: 06/06/2023] Open
Abstract
Migraine is the second highest cause of disability worldwide, bringing a huge socioeconomic burden. Improving mitochondrial function has promise as an effective treatment strategy for migraine. Szeto-Schiller peptide (SS-31) is a new mitochondria-targeted tetrapeptide molecule that has been shown to suppress the progression of diseases by restoring mitochondrial function, including renal disease, cardiac disease, and neurodegenerative disease. However, whether SS-31 has a therapeutic effect on migraine remains unclear. The aim of this study is to clarify the treatment of SS-31 for headache and its potential mechanisms. Here we used a mouse model induced by repeated dural infusion of inflammatory soup (IS), and examined roles of Sirt3/Pgc-1α positive feedback loop in headache pathogenesis and mitochondrial function. Our results showed that repeated IS infusion impaired mitochondrial function, mitochondrial ultrastructure and mitochondrial homeostasis in the trigeminal nucleus caudalis (TNC). These IS-induced damages in TNC were reversed by SS-31. In addition, IS-induced nociceptive responses were simultaneously alleviated. The effects of SS-31 on mitochondrial function and mitochondrial homeostasis (mainly mitochondrial biogenesis) were attenuated partially by the inhibitor of Sirt3/Pgc-1α. Overexpression of Sirt3/Pgc-1α increased the protein level of each other. These results indicated that SS-31 alleviated nociceptive responses and restored mitochondrial function in an IS-induced headache mouse model via Sirt3/Pgc-1α positive feedback loop. SS-31 has the potential to be an effective drug candidate for headache treatment.
Collapse
Affiliation(s)
- Zhengming Shan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yajuan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Tao Qiu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yanjie Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Luyu Hu
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Lili Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, 9 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Jingjing Liang
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Man Ding
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
7
|
Grangeon L, Lange KS, Waliszewska-Prosół M, Onan D, Marschollek K, Wiels W, Mikulenka P, Farham F, Gollion C, Ducros A. Genetics of migraine: where are we now? J Headache Pain 2023; 24:12. [PMID: 36800925 PMCID: PMC9940421 DOI: 10.1186/s10194-023-01547-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase susceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes.
Collapse
Affiliation(s)
- Lou Grangeon
- grid.41724.340000 0001 2296 5231Neurology Department, CHU de Rouen, Rouen, France
| | - Kristin Sophie Lange
- grid.6363.00000 0001 2218 4662Neurology Department, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin, Berlin, Germany
| | - Marta Waliszewska-Prosół
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Dilara Onan
- grid.14442.370000 0001 2342 7339Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Karol Marschollek
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Wietse Wiels
- grid.8767.e0000 0001 2290 8069Department of Neurology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petr Mikulenka
- grid.412819.70000 0004 0611 1895Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Fatemeh Farham
- grid.411705.60000 0001 0166 0922Headache Department, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cédric Gollion
- grid.411175.70000 0001 1457 2980Neurology Department, CHU de Toulouse, Toulouse, France
| | - Anne Ducros
- Neurology Department, CHU de Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | | |
Collapse
|
8
|
Sanchez Del Rio M, Cutrer FM. Pathophysiology of migraine aura. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:71-83. [PMID: 38043972 DOI: 10.1016/b978-0-12-823356-6.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine aura occurs in about a third of patients with migraine and consists of a group of transient focal neurological symptoms that appear from 5 to 60min and then resolve prior to or in the early phase of a migraine headache attack. Migraine auras may consist of visual, language, unilateral sensory, or motor symptoms. There has been considerable debate as to the origins of the migrainous aura. Investigations during physiologically induced visual auras suggest that the phenomenon of cortical spreading depression or its human equivalent underpins the migraine aura. Single gene defects have been linked to relatively rare forms of the motor subtypes of aura known as familial hemiplegic migraine (FHM). These include CACNA1A (FHM1), ATP1A2 (FHM2), and SCN1A (FHM3). In the familial hemiplegic forms of migraine, the more typical forms of aura are almost always also present. Despite ample epidemiological evidence of increased heritability of migraine with aura compared to migraine without aura, identification of the specific variants driving susceptibility to the more common forms of aura has been problematic thus far. In the first genome-wide association study (GWAS) that focused migraine with aura, a single SNP rs835740 reached genome-wide significance. Unfortunately, the SNP did show statistical significance in a later meta-analysis which included GWAS data from subsequent studies. Here, we review the clinical features, pathophysiological theories, and currently available potential evidence for the genetic basis of migraine aura.
Collapse
|
9
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Al Asoom L, Khan J, Al Sunni A, Rafique N, Latif R, Alabdali M, AbdulAzeez S, Borgio JF. A Pilot Mitochondrial Genome-Wide Association on Migraine Among Saudi Arabians. Int J Gen Med 2022; 15:6249-6258. [PMID: 35903646 PMCID: PMC9316482 DOI: 10.2147/ijgm.s371707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations have been reported in multiple neurological diseases and helped to explain the pathophysiology of these diseases. Similarly, variations in mtDNA might exist in migraine and can explain the effect of low ATP production in the neurons on the initiation of migraine attack. Therefore, in the current study we aim to explore the association of mtDNA mutations on migraine in the Saudi population. Subjects and Methods Over 1950 young Saudi female students were screened for migraine, among that a total of 103 satisfied the ICHD-3 criteria. However, 20 migraine cases confirmed in the neurology clinic and gave consent to participate in the study. Another 20 age-matched healthy controls were also recruited. Mitochondrial sequence variations were filtered from exome sequencing using NCBI GenBank Reference Sequence: NC_012920.1 and analysed using MITOMAP. Genes with significant single nucleotide polymorphisms (SNPs) were investigated by the gene functional classification tool DAVID and functional enrichment analysis of protein-protein interaction networks through STRING 11.5 for the most significant associated genes. Results Genome wide analysis of the mitochondrial sequence variations between the patients with migraine and control revealed the association of 30 SNPs (p < 0.05) in the mitochondrial genome. The highest significance (p = 0.001033) was observed in a coding SNP (rs1603225278) in the CYTB gene and rs386829281 in the region of origin of replication. Twenty-four significant SNPs were in the coding region of nine (ND5, ND4, COX2, COX1, ND3, CYTB, COX3, ND2 and ND1) genes. Conclusion This is the first study to demonstrate the association of mtDNA variations with migraine in the Saudi population. The current findings will help to highlight the significance of mtDNA mutations to migraine pathophysiology and will serve as a reference data for larger national and international studies.
Collapse
Affiliation(s)
- Lubna Al Asoom
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Ahmad Al Sunni
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
| | - Nazish Rafique
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
| | - Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
| | - Majed Alabdali
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31952, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
11
|
Bohra SK, Achar RR, Chidambaram SB, Pellegrino C, Laurin J, Masoodi M, Srinivasan A. CURRENT PERSPECTIVES ON MITOCHONDRIAL DYSFUNCTION IN MIGRAINE. Eur J Neurosci 2022; 56:3738-3754. [PMID: 35478208 DOI: 10.1111/ejn.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria is an autonomous organelle that plays a crucial role in the metabolic aspects of a cell. Cortical Spreading Depression (CSD) and fluctuations in the cerebral blood flow have for long been mechanisms underlying migraine. It is a neurovascular disorder with a unilateral manifestation of disturbing, throbbing and pulsating head pain. Migraine affects 2.6 and 21.7% of the general population and is the major cause of partial disability in the age group 15-49. Higher mutation rates, imbalance in concentration of physiologically relevant molecules, oxidative stress biomarkers have been the main themes of discussion in determining the role of mitochondrial disability in migraine. The correlation of migraine with other disorders like hemiplegic migraine, MELAS, TTH, CVS, ischemic stroke and hypertension has helped in the assessment of the physiological and morphogenetic basis of migraine. Here, we have reviewed the different nuances of mitochondrial dysfunction and migraine. The different mtDNA polymorphisms that can affect the generation and transmission of nerve impulse has been highlighted and supported with research findings. In addition to this, the genetic basis of migraine pathogenesis as a consequence of mutations in nuclear DNA that can in turn affect the synthesis of defective mitochondrial proteins is discussed along with a brief overview of epigenetic profile. This review gives an overview of the pathophysiology of migraine and explores mitochondrial dysfunction as a potential underlying mechanism. Also, therapeutic supplements for managing migraine have been discussed at different junctures in this paper.
Collapse
Affiliation(s)
- Shraman Kumar Bohra
- Department of Life Sciences, Pooja Bhagavat Memorial Mahajana Education Center, Mysore
| | - Raghu Ram Achar
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education & Research. Mysore
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Jerome Laurin
- Aix-Marseille University. Sport Science Faculty. Marseille. Institut de Neurobiologie de la Méditerranée, INMED (INSERM- AMU)., France
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, University hospital Bern, Bern
| | - Asha Srinivasan
- Division of Nanoscience & Technology, School of Life Sciences & Centre for Excellence in Molecular Biology and Regenerative Medicine, JSS Academy of Higher Education & Research
| |
Collapse
|
12
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
13
|
Engel L, Becker D, Nissen T, Russ I, Thaller G, Krattenmacher N. Mitochondrial DNA Variation Contributes to the Aptitude for Dressage and Show Jumping Ability in the Holstein Horse Breed. Animals (Basel) 2022; 12:ani12060704. [PMID: 35327102 PMCID: PMC8944467 DOI: 10.3390/ani12060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal lineages are considered an important factor in breeding. Mitochondrial DNA (mtDNA) is maternally inherited and plays an important role in energy metabolism. It has already been associated with energy consumption and performances, e.g., stamina in humans and racehorses. For now, corresponding studies are lacking for sport performance of warmblood breeds. MtDNA sequences were available for 271 Holstein mares from 75 maternal lineages. As all mares within a lineage showed identical haplotypes regarding the non-synonymous variants, we expanded our data set by also including non-sequenced mares and assigning them to the lineage-specific haplotype. This sample consisting of 6334 to 16,447 mares was used to perform mitochondrial association analyses using breeding values (EBVs) estimated on behalf of the Fédération Équestre Nationale (FN) and on behalf of the Holstein Breeding Association (HOL). The association analyses revealed 20 mitochondrial SNPs (mtSNPs) significantly associated with FN-EBVs and partly overlapping 20 mtSNPs associated with HOL-EBVs. The results indicated that mtDNA contributes to performance differences between maternal lineages. Certain mitochondrial haplogroups were associated with special talents for dressage or show jumping. The findings encourage to set up innovative genetic evaluation models that also consider information on maternal lineages.
Collapse
Affiliation(s)
- Laura Engel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
- Correspondence:
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Thomas Nissen
- Verband der Züchter des Holsteiner Pferdes e.V., 24106 Kiel, Germany;
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, 85586 Grub, Germany;
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
| | - Nina Krattenmacher
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24098 Kiel, Germany; (G.T.); (N.K.)
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The lifetime prevalence of headaches is 96%. Approximately 11% of the adult population worldwide has a migraine headache. Migraine is a complex disorder that is more than a simple headache. So far, many underlying mechanisms, i.e. inflammatory, vascular, neurogenic have been hypothesized. In recent years evidences proposed that an energy deficit due to changes in mitochondrial function contributes to migraine pathophysiology as an upstream disorder. Recent insights suggested that the coexistence of sensory-stimuli surplus and energy-reserve shortage activate the trigeminovascular system. Some nutrients are considered as essential elements in mitochondrial bioenergetics and some others are known as natural immuno-modulatory components. Also, evidence showed their beneficial effect in headache prophylaxis and treatment. In present study, we aimed to review the available data in this field. RECENT FINDINGS Vitamin B group, magnesium, and Coenzyme Q10 (CoQ10) are well-known for their function in mitochondrial energy metabolism. On the other hand, studies support their beneficial role in controlling migraine headache symptoms. For instance, daily intake of 400-milligram riboflavin for 3 months resulted in more than 50% reduction in migraine attacks in more than half of the consumers. According to recent evidence, vitamin D and Omega-3 which are considered as famous immune-modulatory compounds are also reported to be effective in migraine prophylaxis. For example, every 22% reduction in migraine headache occurrence was reported for every 5 ng/ml rise in serum vitamin D. Supplementation with vitamin B group, CoQ10, magnesium, vitamin D and Omega-3 could be considered as an effective, less costly strategy in headache/migraine prophylaxis.
Collapse
|
15
|
Burow P, Haselier M, Naegel S, Scholle LM, Gaul C, Kraya T. The Mitochondrial Biomarkers FGF-21 and GDF-15 in Patients with Episodic and Chronic Migraine. Cells 2021; 10:cells10092471. [PMID: 34572118 PMCID: PMC8471677 DOI: 10.3390/cells10092471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial processes may play a role in the pathophysiology of migraine. Serum levels of two biomarkers, Fibroblast-growth-factor 21 (FGF-21) and Growth-differentiation-factor 15 (GDF-15), are typically elevated in patients with mitochondrial disorders. The study investigated whether the presence of migraine may influence FGF-21 and GDF-15 serum levels considering vascular and metabolic disorders as possible confounders. A cross-sectional study in two headache centers was conducted analyzing GDF-15 and FGF-21 serum concentration in 230 patients with episodic and chronic migraine compared to a control group. Key clinical features of headache were evaluated, as well as health-related life quality, anxiety and depression using SF-12 and HADS-questionnaires. Elevated GDF-15 values were detected in the migraine group compared to the control group (506.65 ± 275.87 pg/mL vs. 403.34 ± 173.29 pg/mL, p < 0.001, Mann–Whitney U test). A strong correlation between increasing age and higher GDF-15 levels was identified (p < 0.001, 95%-CI elevation of GDF-15 per year 5.246–10.850 pg/mL, multiple linear regression). Mean age was different between the groups, and this represents a confounding factor of the measurements. FGF-21 levels did not differ between migraine patients and controls (p = 0.635, Mann–Whitney U test) but were significantly influenced by increasing BMI (p = 0.030, multiple linear regression). Neither biomarker showed correlation with headache frequency. Higher FGF-21 levels were associated with a higher mean intensity of headache attacks, reduced health-related life quality and anxiety. When confounding factors were considered, increased serum levels of FGF-21 and GDF-15 were not detected in migraine patients. However, the results show an age-dependence of GDF-15 in migraine patients, and this should be considered in future studies. Similar findings apply to the relationship between FGF-21 and BMI. Previous studies that did not adjust for these factors should be interpreted with caution.
Collapse
Affiliation(s)
- Philipp Burow
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
- Correspondence:
| | - Marc Haselier
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Steffen Naegel
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Leila Motlagh Scholle
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
| | - Charly Gaul
- Headache Center Frankfurt, Dalbergstraße 2A, 65929 Frankfurt am Main, Germany;
| | - Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Ernst-Grube-Straße 40, 06120 Halle (Saale), Germany; (M.H.); (S.N.); (L.M.S.); (T.K.)
- Department of Neurology, Hospital Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany
| |
Collapse
|
16
|
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes encode proteins expressed in neurons, astrocytes or vessels, which all increase the susceptibility to cortical spreading depression. Study of monogenic migraines showed that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified multiple susceptibility variants that only cause a small increase of the global migraine risk. The variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also underscored the importance of genetic factors shared between migraine and its major co-morbidities including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes. Thanks to the advent of new technologies such as induced pluripotent stem cells, genetic data will hopefully finally be able to lead to therapeutic progress.
Collapse
|
17
|
Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 2021; 22:55. [PMID: 34112082 PMCID: PMC8192049 DOI: 10.1186/s10194-021-01271-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroinflammation has an important role in the pathophysiology of migraine, which is a complex neuro-glio-vascular disorder. The main aim of this review is to highlight findings of cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma from the inflammasome perspective. In addition, we discuss the limited data of the contribution of inflammasomes to other aspects of migraine pathophysiology, foremost the activation of the trigeminovascular system and thereby the generation of migraine pain. MAIN BODY Inflammasomes are signaling multiprotein complexes and key components of the innate immune system. Their activation causes the production of inflammatory cytokines that can stimulate trigeminal neurons and are thus relevant to the generation of migraine pain. The contribution of inflammasome activation to pain signaling has attracted considerable attention in recent years. Nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome and there is emerging evidence of its role in a variety of inflammatory pain conditions, including migraine. In this review, we discuss, from an inflammasome point of view, cortical spreading depolarization (CSD)-induced neuroinflammatory signaling in brain parenchyma, the connection with genetic factors that make the brain vulnerable to CSD, and the relation of the inflammasome with diseases that are co-morbid with migraine, including stroke, epilepsy, and the possible links with COVID-19 infection. CONCLUSION Neuroinflammatory pathways, specifically those involving inflammasome proteins, seem promising candidates as treatment targets, and perhaps even biomarkers, in migraine.
Collapse
Affiliation(s)
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
18
|
Ebahimzadeh K, Gholipour M, Samadian M, Taheri M, Ghafouri-Fard S. A Comprehensive Review on the Role of Genetic Factors in the Pathogenesis of Migraine. J Mol Neurosci 2021; 71:1987-2006. [PMID: 33447900 DOI: 10.1007/s12031-020-01788-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
Migraine is a common neurovascular condition. This disorder has a complex genetic background. Several single-nucleotide polymorphisms (SNPs) or mutations within genes regulating glutamatergic neurotransmission, cortical excitability, ion channels, and solute carriers have been associated with polygenic and monogenic forms of migraine. SNPs within ACE, DBH, TRPM8, COMT, GABRQ, CALCA, TRPV1, and other genes have been reported to affect the risk of migraine or the associated clinical parameters. The distribution of some HLA alleles within the HLA-DRB1, HLA-DR2, HLA-B, and HLA-C regions have also been found to differ between migraineurs and healthy subjects. In addition, certain mitochondrial DNA changes and polymorphisms in this region have been shown to increase the risk of migraine. A few functional studies have investigated the molecular mechanisms contributing to these genetic factors in the development of migraine. Here we review studies evaluating the role of genetic polymorphisms and mRNA/miRNA dysregulation in migraine.
Collapse
Affiliation(s)
- Kaveh Ebahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Bron C, Sutherland HG, Griffiths LR. Exploring the Hereditary Nature of Migraine. Neuropsychiatr Dis Treat 2021; 17:1183-1194. [PMID: 33911866 PMCID: PMC8075356 DOI: 10.2147/ndt.s282562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Migraine is a common neurological disorder which affects 15-20% of the population; it has a high socioeconomic impact through treatment and loss of productivity. Current forms of diagnosis are primarily clinical and can be difficult owing to comorbidity and symptom overlap with other neurological disorders. As such, there is a need for better diagnostic tools in the form of genetic testing. Migraine is a complex disorder, encompassing various subtypes, and has a large genetic component. Genetic studies conducted on rare monogenic subtypes, including familial hemiplegic migraine, have led to insights into its pathogenesis via identification of causal mutations in three genes (CACNA1A, ATP1A2 and SCN1A) that are involved in transport of ions at synapses and glutamatergic transmission. Study of familial migraine with aura pedigrees has also revealed other causal genes for monogenic forms of migraine. With respect to the more common polygenic form of migraine, large genome-wide association studies have increased our understanding of the genes, pathways and mechanisms involved in susceptibility, which are largely involved in neuronal and vascular functions. Given the preponderance of female migraineurs (3:1), there is evidence to suggest that hormonal or X-linked components can also contribute to migraine, and the role of genetic variants in mitochondrial DNA in migraine has been another avenue of exploration. Epigenetic studies of migraine have shown links between hormonal variation and alterations in DNA methylation and gene expression. While there is an abundance of preliminary studies identifying many potentially causative migraine genes and pathways, more comprehensive genomic and functional analysis to better understand mechanisms may aid in better diagnostic and treatment outcomes.
Collapse
Affiliation(s)
- Charlene Bron
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| | - Heidi G Sutherland
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland, 4059, Australia
| |
Collapse
|
20
|
de Boer I, Terwindt GM, van den Maagdenberg AMJM. Genetics of migraine aura: an update. J Headache Pain 2020; 21:64. [PMID: 32503413 PMCID: PMC7275514 DOI: 10.1186/s10194-020-01125-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Migraine is a common brain disorder with a large genetic component. Of the two main migraine types, migraine with aura and migraine without aura, the genetic underpinning in the former is least understood. Given the evidence from epidemiological studies in cohorts and families that the genetic contribution is highest in migraine with aura, this seems paradoxical. Various genetic approaches have been applied to identify genetic factors that confer risk for migraine. Initially, so-called candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) tested variants in any gene in an hypothesis-free manner. Whereas GWAS in migraine without aura, or the more general diagnosis migraine have already identified dozens of gene variants, the specific hunt for gene variants in migraine with aura has been disappointing. The only GWAS specifically investigating migraine with aura yielded only one single associated single nucleotide polymorphism (SNP), near MTDH and PGCP, with genome-wide significance. However, interrogation of all genotyped SNPs, so beyond this one significant hit, was more successful and led to the notion that migraine with aura and migraine without aura are genetically more alike than different. Until now, most relevant genetic discoveries related to migraine with aura came from investigating monogenetic syndromes with migraine aura as a prominent phenotype (i.e. FHM, CADASIL and FASPS). This review will highlight the genetic findings relevant to migraine with aura.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|