1
|
Blumenfeld AM, Mechtler L, Cook L, Rhyne C, Jenkins B, Hughes O, Dabruzzo B, Manack Adams A, Diamond M. Real-World Evidence of the Safety and Effectiveness of Atogepant Added to OnabotulinumtoxinA for the Preventive Treatment of Chronic Migraine: A Retrospective Chart Review. Pain Ther 2024; 13:1571-1587. [PMID: 39287781 PMCID: PMC11543951 DOI: 10.1007/s40122-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
INTRODUCTION Combination use of atogepant and onabotulinumtoxinA has the potential to be more effective than either alone for the preventive treatment of chronic migraine (CM) due to their complementary mechanisms of action. This analysis collected real-world data to evaluate the safety, tolerability, and effectiveness of adding atogepant to onabotulinumtoxinA as a combination preventive treatment for CM. METHODS This retrospective, longitudinal, multicenter chart review included adults with CM who received ≥ 2 consecutive cycles of onabotulinumtoxinA before ≥ 1 month of onabotulinumtoxinA and atogepant combination treatment. Charts at atogepant prescription (index date) and two subsequent onabotulinumtoxinA treatment visits (~ 3 and ~ 6 months post-index) were reviewed for change from baseline in monthly headache days (MHDs), ≥ 50% reduction in MHDs, discontinuation rates, and adverse events (AEs). RESULTS Of the 55 charts that met safety analysis criteria, 31 had data on headache days at index and first post-index visit and were eligible for effectiveness analysis (mean age 46.7 years, 94.5% female). For those with data available prior to onabotulinumtoxinA treatment (n = 25), the mean MHD was 24.0 days, reduced by 8.15 days after onabotulinumtoxinA treatment. After atogepant was added, MHD was incrementally reduced by 4.53 days and 8.75 days from index date to the first (N = 31) and second (N = 23) post-index onabotulinumtoxinA treatment visit, respectively. A ≥ 50% reduction in MHDs was achieved by 45.2% of patients ~ 3 months post-index. Atogepant and onabotulinumtoxinA were discontinued by 16.1% and 6.5% of patients, respectively. In the safety population, 32.7% of patients experienced ≥ 1 AE. No serious AEs were reported. CONCLUSIONS This real-world study of patients with CM demonstrated that adding atogepant to onabotulinumtoxinA as a combination preventive treatment for CM was effective by providing an additional reduction in MHDs over ~ 3 and ~ 6 months of combination treatment. Safety results were consistent with the known safety profiles of onabotulinumtoxinA and atogepant, with no new safety signals identified.
Collapse
Affiliation(s)
- Andrew M Blumenfeld
- The Los Angeles Headache Center, Los Angeles, CA, USA.
- The San Diego Headache Center, San Diego, CA, USA.
| | | | - Lisa Cook
- The Los Angeles Headache Center, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Schwedt TJ, Pradhan AA, Oshinsky ML, Brin MF, Rosen H, Lalvani N, Charles A, Ashina M, Do TP, Burstein R, Gelfand AA, Dodick DW, Pozo-Rosich P, Lipton RB, Ailani J, Szperka CL, Charleston L, Digre KB, Russo AF, Buse DC, Powers SW, Tassorelli C, Goadsby PJ. The headache research priorities: Research goals from the American Headache Society and an international multistakeholder expert group. Headache 2024; 64:912-930. [PMID: 39149968 DOI: 10.1111/head.14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE To identify and disseminate research priorities for the headache field that should be areas of research focus during the next 10 years. BACKGROUND Establishing research priorities helps focus and synergize the work of headache investigators, allowing them to reach the most important research goals more efficiently and completely. METHODS The Headache Research Priorities organizing and executive committees and working group chairs led a multistakeholder and international group of experts to develop headache research priorities. The research priorities were developed and reviewed by clinicians, scientists, people with headache, representatives from headache organizations, health-care industry representatives, and the public. Priorities were revised and finalized after receiving feedback from members of the research priorities working groups and after a public comment period. RESULTS Twenty-five research priorities across eight categories were identified: human models, animal models, pathophysiology, diagnosis and management, treatment, inequities and disparities, research workforce development, and quality of life. The priorities address research models and methods, development and optimization of outcome measures and endpoints, pain and non-pain symptoms of primary and secondary headaches, investigations into mechanisms underlying headache attacks and chronification of headache disorders, treatment optimization, research workforce recruitment, development, expansion, and support, and inequities and disparities in the headache field. The priorities are focused enough that they help to guide headache research and broad enough that they are widely applicable to multiple headache types and various research methods. CONCLUSIONS These research priorities serve as guidance for headache investigators when planning their research studies and as benchmarks by which the headache field can measure its progress over time. These priorities will need updating as research goals are met and new priorities arise.
Collapse
Affiliation(s)
| | - Amynah A Pradhan
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael L Oshinsky
- National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Mitchell F Brin
- AbbVie, Irvine, California, USA
- Department of Neurology, University of California Irvine, Irvine, California, USA
| | - Howard Rosen
- American Headache Society, Mount Royal, New Jersey, USA
| | - Nim Lalvani
- American Migraine Foundation, New York, New York, USA
| | - Andrew Charles
- University of California Los Angeles, Los Angeles, California, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rami Burstein
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Amy A Gelfand
- Child & Adolescent Headache Program, University of California San Francisco, San Francisco, California, USA
| | - David W Dodick
- Mayo Clinic, Phoenix, Arizona, USA
- Atria Academy of Science and Medicine, New York, New York, USA
| | | | | | | | - Christina L Szperka
- Perelman School of Medicine at the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Larry Charleston
- Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | | | | | - Dawn C Buse
- Albert Einstein College of Medicine, Bronx, New York, USA
- Vector Psychometric Group, Chapel Hill, North Carolina, USA
| | - Scott W Powers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | | | - Peter J Goadsby
- University of California Los Angeles, Los Angeles, California, USA
- NIHR King's Clinical Research Facility, King's College London, London, UK
| |
Collapse
|
3
|
Melo-Carrillo A, Strassman AM, Malcolm KKJ, Adams AM, Dabruzzo B, Briode RS, Brin MF, Burstein R. Exploring the effects of extracranial injections of botulinum toxin type A on activation and sensitization of central trigeminovascular neurons by cortical spreading depression in male and female rats. Cephalalgia 2024; 44:3331024241278919. [PMID: 39252510 DOI: 10.1177/03331024241278919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND OnabotulinumtoxinA (onabotA), is assumed to achieve its therapeutic effect in migraine through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with central dura-sensitive trigeminovascular neurons in the spinal trigeminal nucleus (SPV). The present study investigated the mechanism of action of onabotA by assessing its effect on activation and sensitization of dura-sensitive neurons in the SPV by cortical spreading depression (CSD). It is a follow up to our recent study on onabotA effects on activation and sensitization of peripheral trigeminovascular neurons. METHODS In anesthetized male and female rats, single-unit recordings were used to assess effects of extracranial injections of onabotA (five injections, one unit each, diluted in 5 μl of saline were made along the lambdoid (two injection sites) and sagittal (two injection sites) suture) vs. vehicle on CSD-induced activation and sensitization of high-threshold (HT) and wide-dynamic range (WDR) dura-sensitive neurons in the SPV. RESULTS Single cell analysis of onabotA pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the SPV revealed the ability of this neurotoxin to prevent activation and sensitization of WDR neurons (13/20 (65%) vs. 4/16 (25%) activated neurons in the control vs. treated groups, p = 0.022, Fisher's exact). By contrast, onabotA pretreatment effects on CSD-induced activation and sensitization of HT neurons had no effect on their activation (12/18 (67%) vs. 4/7 (36%) activated neurons in the control vs. treated groups, p = 0.14, Fisher's exact). Regarding sensitization, we found that onabotA pretreatment prevented the enhanced responses to mechanical stimulation of the skin (i.e. responses reflecting central sensitization) in both WDR and HT neurons. In control but not treated WDR neurons, responses to brush (p = 0.004 vs. p = 0.007), pressure (p = 0.002 vs. p = 0.79) and pinch (p = 0.007 vs. 0.79) increased significantly two hours after CSD. Similarly, in control but not treated HT neurons, responses to brush (p = 0.002 vs. p = 0.79), pressure (p = 0.002 vs. p = 0.72) and pinch (p = 0.0006 vs. p = 0.28) increased significantly two hours after CSD. Unexpectedly, onabotA pretreatment prevented the enhanced responses of both WDR and HT neurons to mechanical stimulation of the dura (commonly reflecting peripheral sensitization). In control vs. treated WDR and HT neurons, responses to dural stimulation were enhanced in 70 vs. 25% (p = 0.017) and 78 vs. 27% (p = 0.017), respectively. CONCLUSIONS The ability of onabotA to prevent activation and sensitization of WDR neurons is attributed to its preferential inhibitory effects on unmyelinated C-fibers. The inability of onabotA to prevent activation of HT neurons is attributed to its less extensive inhibitory effects on the thinly myelinated Aδ-fibers. These findings provide further pre-clinical evidence about differences and potentially complementary mechanisms of action of onabotA and calcitonin gene-related peptide-signaling neutralizing drugs.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Khrystoffer-Kihan J Malcolm
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Mitchell F Brin
- Allergan, an Abbvie Company, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Pozo-Rosich P, Alpuente A, Silberstein SD, Burstein R. Insights from 25 years of onabotulinumtoxinA in migraine - mechanisms and management. Nat Rev Neurol 2024; 20:555-568. [PMID: 39160284 DOI: 10.1038/s41582-024-01002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
OnabotulinumtoxinA (BTX-A) was first linked to beneficial effects in migraine 25 years ago and was approved by the FDA for preventive treatment of chronic migraine in 2010. The treatment has since had a major impact on the well-being of people with chronic migraine. The clinical development programme for BTX-A and research since its approval have provided insights into the neuromodulatory sensory effect of BTX-A, how it can control chronic migraine despite its peripheral action, and the underlying biology of migraine as a disease. In this Review, we consider the impact that BTX-A has had on the management of chronic migraine and on the research field. We discuss the insights provided by clinical research, encompassing the clinical trials and subsequent real-world evidence, and the mechanistic insights provided by preclinical and translational research. We also provide an overview of future directions of research in the field BTX-A in migraine and the clinical translation of this research.
Collapse
Affiliation(s)
- Patricia Pozo-Rosich
- Headache & Neurological Pain Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alicia Alpuente
- Headache & Neurological Pain Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Melo-Carrillo A, Strassman AM, Broide R, Adams A, Dabruzzo B, Brin M, Burstein R. Novel insight into atogepant mechanisms of action in migraine prevention. Brain 2024; 147:2884-2896. [PMID: 38411458 PMCID: PMC11292906 DOI: 10.1093/brain/awae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ron Broide
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | - Aubrey Adams
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | | | - Mitchell Brin
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
- Department of Neurology, University of California, Irvine, CA 92697USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Baraldi C, Beier D, Martelletti P, Pellesi L. The preclinical discovery and development of atogepant for migraine prophylaxis. Expert Opin Drug Discov 2024; 19:783-788. [PMID: 38856039 DOI: 10.1080/17460441.2024.2365379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Atogepant is a selective calcitonin gene-related peptide (CGRP) receptor antagonist that is utilized in adults for the prevention of episodic and chronic migraine. Cumulative findings support the involvement of CGRP in migraine pathophysiology, and atogepant functions by competitively antagonizing CGRP receptors, which results in the inhibition of trigeminovascular nociception. The mechanism of action addresses the cause of migraine pain, providing an effective preventive treatment option. AREAS COVERED The key milestones in its development, including preclinical achievements, phase I, II, and III clinical trials, and regulatory approvals are reviewed. Additionally, clinical efficacy, safety profile, and tolerability of atogepant are discussed. The literature review is based on a comprehensive search of English peer-reviewed articles from various electronic databases, including PubMed and ClinicalTrials.gov. EXPERT OPINION The development of atogepant represents a significant breakthrough in migraine prevention, particularly due to its improved safety profile that reduces the risk of liver injury, which was a major limitation of first-generation gepants. Drug-drug interaction studies with atogepant highlight the necessity for more inclusive study populations. Given that migraine disproportionately affects females, future clinical development programs should include diverse patient demographics to ensure the findings are generalizable to all individuals suffering from migraine.
Collapse
Affiliation(s)
- Carlo Baraldi
- Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| | - Dagmar Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Lanfranco Pellesi
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Song X, Zhu Q, Su L, Shi L, Chi H, Yan Y, Luo M, Xu X, Liu B, Liu Z, Yang J. New perspectives on migraine treatment: a review of the mechanisms and effects of complementary and alternative therapies. Front Neurol 2024; 15:1372509. [PMID: 38784897 PMCID: PMC11111892 DOI: 10.3389/fneur.2024.1372509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Migraine is a prevalent and disabling neurovascular disorder, with women being more susceptible, characterized by unilateral throbbing headache, often accompanied by nausea and vomiting, and often associated with various comorbidities such as brain and cardiovascular diseases, which can have a serious impact on quality of life. Although nonsteroidal anti-inflammatory drugs (NSAIDs) are the main first-line medications for the treatment of pain, long-term use often leads to side effects and drug addiction, which emphasizes the need to investigate alternative pain management strategies with fewer adverse effects. Complementary and alternative medicine is a viable pain intervention often used in conjunction with traditional medications, including acupuncture, herbs, moxibustion, transcutaneous electrical stimulation, bio-supplements, and acupressure, which offer non-pharmacological alternatives that are now viable pain management options. This review focuses on the mechanistic doctrine of migraine generation and the role and potential mechanisms of Complementary and Alternative Therapies (CAT) in the treatment of migraine, summarizes the research evidences for CAT as an adjunct or alternative to conventional therapies for migraine, and focuses on the potential of novel migraine therapies (calcitonin gene-related peptide (CGRP) antagonists and pituitary adenylyl cyclase-activating peptide (PACAP) antagonists) with the aim of evaluating CAT therapies as adjunctive or alternative therapies to conventional migraine treatment, thereby providing a broader perspective on migraine management and the design of treatment programs for more effective pain management.
Collapse
Affiliation(s)
- Xiaoli Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Mei Luo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xibin Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Zhengyang Liu
- Evidence Based Oriental Medicine clinic, Sioux Falls, SD, United States
| | - Jin Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
8
|
Blumenfeld AM, Lipton RB, Silberstein S, Tepper SJ, Charleston L, Landy S, Kuruvilla DE, Manack Adams A. Multimodal Migraine Management and the Pursuit of Migraine Freedom: A Narrative Review. Neurol Ther 2023; 12:1533-1551. [PMID: 37542624 PMCID: PMC10444724 DOI: 10.1007/s40120-023-00529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Migraine is a neurologic disease with a complex pathophysiology that can be controlled with current treatment options but not cured. Therefore, treatment expectations are highly variable. The concept of migraine freedom was recently introduced and can mean different things, with some, for example, expecting complete freedom from headache and associated symptoms and others accepting the occasional migraine attack if it does not impact functioning. Therefore, migraine management should be optimized so that patients can have the best opportunity to achieve their optimal treatment goals. With migraine freedom as a goal and, given the complex pathophysiology of migraine and the high incidence of comorbidities among individuals with migraine, treatment with a single modality may be insufficient, as it may not achieve migraine freedom in those with more frequent or disabling attacks. In this clinical perspective article, we have identified four key, partially overlapping principles of multimodal migraine treatment: (1) manage common comorbidities; (2) control modifiable risk factors for progression by addressing medication and caffeine overuse; (3) diagnose and treat secondary causes of headache, if present; and (4) individualize acute and preventive treatments to minimize pain, functional disability, and allodynia. There are many barriers to pursuing migraine freedom, and strategies to overcome them should be optimized. Migraine freedom should be an aspirational goal both at the individual attack level and for the disease overall. We believe that a comprehensive and multimodal approach that addresses all barriers people with migraine face could move patients closer to migraine freedom.
Collapse
Affiliation(s)
| | | | | | - Stewart J Tepper
- New England Institute for Neurology and Headache, Stamford, CT, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | | | | |
Collapse
|
9
|
Cho S, Kim BK. Update of Gepants in the Treatment of Chronic Migraine. Curr Pain Headache Rep 2023; 27:561-569. [PMID: 37656319 DOI: 10.1007/s11916-023-01167-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW Despite the unmet therapeutic needs of patients with chronic migraine (CM) and/or medication overuse, available treatment options are limited. Recently, four calcitonin gene-related peptide receptor antagonists, known as gepants, have been approved for the treatment of migraine. This review focuses on the preventive treatment of CM with gepants and highlights recent findings. RECENT FINDINGS Two randomized controlled trials (RCTs) have shown promising results for rimegepant and atogepant as preventive treatments for CM. In an RCT targeting patients with CM, atogepant demonstrated a significant reduction in the mean monthly migraine days, irrespective of acute medication overuse. Moreover, the patients reported no significant safety concerns and exhibited good tolerance to treatment. These findings highlight the potential of gepants as a new and effective therapeutic option for patients with CM and/or medication overuse. Gepant use will help improve the management and quality of life of individuals with this debilitating condition.
Collapse
Affiliation(s)
- Soohyun Cho
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Korea
| | - Byung-Kun Kim
- Department of Neurology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Kaji R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023; 234:107264. [PMID: 37657515 DOI: 10.1016/j.toxicon.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Despite the expanding clinical utility of botulinum neurotoxins, there remain problems to be solved for attaining the best outcome. The efficacy and safety need to be reconsidered for commercially available preparations all derived from subtype A1 or B1. Emerging new toxins include A2 or A6 subtypes or engineered toxins with less spread, more potency, longer durations of action, less antigenicity and better safety profile than currently used preparations. Non-toxic BoNTs with a few amino acid replacements of the light chain (LC) may have a role as a drug-delivery system if the toxicity is abolished entirely. At present, efficacy of these BoNTs in animal botulism was demonstrated.
Collapse
Affiliation(s)
- Ryuji Kaji
- Tokushima University, Department of Clinical Neuroscience, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
11
|
Robblee J. Breaking the cycle: unraveling the diagnostic, pathophysiological and treatment challenges of refractory migraine. Front Neurol 2023; 14:1263535. [PMID: 37830088 PMCID: PMC10565861 DOI: 10.3389/fneur.2023.1263535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Background Refractory migraine is a poorly described complication of migraine in which migraine has chronified and become resistant to standard treatments. The true prevalence is unknown, but medication resistance is common in headache clinic patient populations. Given the lack of response to treatment, this patient population is extremely difficult to treat with limited guidance in the literature. Objective To review the diagnostic, pathophysiological, and management challenges in the refractory migraine population. Discussion There are no accepted, or even ICHD-3 appendix, diagnostic criteria for refractory migraine though several proposed criteria exist. Current proposed criteria often have low bars for refractoriness while also not meeting the needs of pediatrics, lower socioeconomic status, and developing nations. Pathophysiology is unknown but can be hypothesized as a persistent "on" state as a progression from chronic migraine with increasing central sensitization, but there may be heterogeneity in the underlying pathophysiology. No guidelines exist for treatment of refractory migraine; once all guideline-based treatments are tried, treatment consists of n-of-1 treatment trials paired with non-pharmacologic management. Conclusion Refractory migraine is poorly described diagnostically, its pathophysiology can only be guessed at by extension of chronic migraine, and treatment is more the art than science of medicine. Navigating care of this refractory population will require multidisciplinary care models and an emphasis on future research to answer these unknowns.
Collapse
Affiliation(s)
- Jennifer Robblee
- Department of Neurology, Dignity Health, St Joseph’s Hospital and Medical Center, Lewis Headache Clinic, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
12
|
Manack Adams A, Hutchinson S, Engstrom E, Ayasse ND, Serrano D, Davis L, Sommer K, Contreras-De Lama J, Lipton RB. Real-world effectiveness, satisfaction, and optimization of ubrogepant for the acute treatment of migraine in combination with onabotulinumtoxinA: results from the COURAGE Study. J Headache Pain 2023; 24:102. [PMID: 37537578 PMCID: PMC10399003 DOI: 10.1186/s10194-023-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Individuals using onabotulinumtoxinA as a preventive migraine treatment often use acute treatments for breakthrough attacks. Data on real-world effectiveness of the small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist ubrogepant in combination with onabotulinumtoxinA are limited. METHODS COURAGE, a prospective, multiple attack, observational study, evaluated the real-world effectiveness of ubrogepant (50 or 100 mg) for acute treatment of migraine in people receiving onabotulinumtoxinA, an anti-CGRP monoclonal antibody (mAb), or both. This analysis focused only on onabotulinumtoxinA users. The Migraine Buddy app was used to identify eligible participants and track response to treated attacks. For each ubrogepant-treated attack, meaningful pain relief (MPR) and return to normal function (RNF) at 2 and 4 h post-dose over 30 days was assessed. MPR was defined as a level of relief that is meaningful to the participant, usually occurring before the pain is all gone. After 30 days, satisfaction was reported on a 7-point scale and overall acute treatment optimization was evaluated using the migraine Treatment Optimization Questionnaire-4 (mTOQ-4). RESULTS This analysis included 122 participants who received ubrogepant and onabotulinumtoxinA and reported on 599 ubrogepant-treated attacks. Following the first ubrogepant-treated attack, MPR was achieved in 53.3% of participants 2 h post-dose and in 76.2% of participants 4 h post-dose. RNF was achieved in 25.4% of participants 2 h post-dose and in 45.9% of participants 4 h post-dose. MPR and RNF results were similar across up to 10 ubrogepant-treated attacks. After 30 days, satisfaction with ubrogepant in combination with onabotulinumtoxinA was reported by 69.8% of participants and acute treatment optimization (defined as mTOQ-4 score ≥ 4) was achieved in 77.6%. CONCLUSIONS In this prospective real-world effectiveness study, ubrogepant treatment in onabotulinumtoxinA users with self-identified migraine was associated with high rates of MPR and RNF at 2 and 4 h as well as satisfaction and acute treatment optimization. Although the lack of a contemporaneous control group limits causal inference, these findings demonstrate the feasibility of using a novel, app-based design to evaluate the real-world effectiveness and satisfaction of treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Linda Davis
- Kolvita Family Medical Group, Mission Viejo, CA, USA
| | | | | | | |
Collapse
|
13
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Lee MJ, Al-Karagholi MAM, Reuter U. New migraine prophylactic drugs: Current evidence and practical suggestions for non-responders to prior therapy. Cephalalgia 2023; 43:3331024221146315. [PMID: 36759320 DOI: 10.1177/03331024221146315] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (anti-CGRP(-R) mAbs) and small-molecule CGRP receptor antagonists (gepants) are new mechanism-based prophylactic drugs developed to address the unmet needs of pre-existing migraine prophylactic medications. However, several uncertainties remain in their real-world applications. METHODS This is a narrative review of the literature on the use of CGRP-targeting novel therapeutics in specific situations, including non-responders to prior therapy, combination therapy, switching, and treatment termination. In the case of lack of available literature, we made suggestions based on clinical reasoning. RESULTS High-quality evidence supports the use of all available anti-CGRP(-R) mAbs (erenumab, galcanezumab, fremanezumab, and eptinezumab) in non-responders to prior therapy. There is insufficient evidence to support or reject the efficacy of combining CGRP(-R) mAbs or gepants with oral migraine prophylactic agents or botulinum toxin A. Switching from one CGRP(-R) mAb to another might benefit a fraction of patients. Currently, treatment termination depends on reimbursement policies, and the optimal mode of termination is discussed. CONCLUSIONS New prophylactic drugs that target the CGRP pathway are promising treatment options for patients with difficult-to-treat migraine. Individualized approaches using a combination of new substances with oral prophylactic drugs or botulinum toxin A, switching between new drugs, and adjusting treatment duration could enhance excellence in practice.
Collapse
Affiliation(s)
- Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Greifswald, Germany.,Board of Directors, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Rissardo JP, Caprara ALF. Gepants for Acute and Preventive Migraine Treatment: A Narrative Review. Brain Sci 2022; 12:1612. [PMID: 36552072 PMCID: PMC9775271 DOI: 10.3390/brainsci12121612] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) antagonists are a class of medications that act as antagonists of the CGRP receptor or ligand. They can be divided into monoclonal antibodies and non-peptide small molecules, also known as gepants. CGRP antagonists were the first oral agents specifically designed to prevent migraines. The second generation of gepants includes rimegepant (BHV-3000, BMS-927711), ubrogepant (MK-1602), and atogepant (AGN-241689, MK-8031). Zavegepant (BHV-3500, BMS-742413) belongs to the third generation of gepants characterized by different administration routes. The chemical and pharmacological properties of this new generation of gepants were calculated. The clinical trials showed that the new generation of CGRP antagonists is effective for the acute and/or preventive treatment of migraines. No increased mortality risks were observed to be associated with the second- and third-generation gepants. Moreover, the majority of the serious adverse events reported probably occurred unrelated to the medications. Interesting facts about gepants were highlighted, such as potency, hepatotoxicity, concomitant use with monoclonal antibodies targeting the CGRP, comparative analysis with triptans, and the "acute and preventive" treatment of migraine. Further studies should include an elderly population and compare the medications inside this class and with triptans. There are still concerns regarding the long-term side effects of these medications, such as chronic vascular hemodynamic impairment. Meanwhile, careful pharmacovigilance and safety monitoring should be performed in the clinical practice use of gepants.
Collapse
Affiliation(s)
- Jamir Pitton Rissardo
- Medicine Department, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | | |
Collapse
|
16
|
Bedrin K, Ailani J, Dougherty C. Raynaud's phenomenon associated with calcitonin gene-related peptide receptor antagonists case report. Headache 2022; 62:1419-1423. [PMID: 36426766 DOI: 10.1111/head.14417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a potent vasodilator that regulates the cerebrovascular and peripheral circulation. A new class of migraine therapies decreases CGRP through various mechanisms. One unknown off-target effect is the impact decreasing CGRP will have on the peripheral circulation. The following cases report new onset Raynaud's phenomenon (RP) following the use of CGRP receptor antagonists (-gepants) for both the acute and preventive treatment of migraine. These cases describe the development of RP in two individuals after using each of the currently available gepant medications. To our knowledge these are the first cases reported of RP associated with the use of gepants. RP has previously been reported in association with monoclonal antibodies to the CGRP ligand and CGRP receptor indicated in the prevention of migraine. CASE PRESENTATION One case involved oral CGRP receptor antagonists for acute treatment inducing RP. In this case, rimegepant and ubrogepant used separately for different migraine attacks each led to RP in the digits. The other case involved oral CGRP receptor antagonist, atogepant, used as a preventive treatment and induced RP in the digits. This patient had a prior history of areolar tissue RP while breastfeeding, but never in her fingers. In both cases, the offending medications were discontinued, and the patients reported no further episodes of RP. CONCLUSION Two cases are reported of people with migraine with new onset digital RP while taking CGRP receptor antagonists (rimegepant, ubrogepant, atogepant) for acute and preventive treatment.
Collapse
Affiliation(s)
- Kate Bedrin
- Medstar Georgetown Headache Center, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Jessica Ailani
- Medstar Georgetown Headache Center, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Carrie Dougherty
- Medstar Georgetown Headache Center, Department of Neurology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Cohen F, Yuan H. Role of Atogepant in the Treatment of Episodic Migraines: Clinical Perspectives and Considerations. Ther Clin Risk Manag 2022; 18:447-456. [PMID: 35493707 PMCID: PMC9043257 DOI: 10.2147/tcrm.s348724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
Advances in molecular biology and neuroscience have led to the discovery of calcitonin gene-related peptide (CGRP), a 37 amino-acid neuropeptide that plays a critical role in the pathogenesis of migraine. CGRP receptor antagonist, also known as gepant, is an oral medication that inhibits the CGRP-related nociceptive signaling pathway. To date, three gepants are approved by the FDA for migraine treatment. Atogepant is a 2nd-generation gepant that non-competitively antagonizes CGRP receptors inhibiting neurogenic inflammation and pain sensitization. With its long half-life and minimal cardiovascular or liver toxicity, it is the first in its class approved primarily for migraine prevention. This article will discuss the evidence, safety, and rationale of atogepant for use in clinical practice.
Collapse
Affiliation(s)
- Fred Cohen
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hsiangkuo Yuan
- Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Correspondence: Hsiangkuo Yuan, Jefferson Headache Center, Department of Neurology, Thomas Jefferson University, 900 Walnut St. Suite 200, Philadelphia, PA, 19107, USA, Tel +1 215-955-2243, Fax +1 215-955-2060, Email
| |
Collapse
|
18
|
Rustichelli C, Avallone R, Ferrari A. Atogepant: an emerging treatment for migraine. Expert Opin Pharmacother 2022; 23:653-662. [PMID: 35319319 DOI: 10.1080/14656566.2022.2057221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Until recently, only nonspecific and not always well-tolerated medications were available for migraine prophylaxis. Currently, specific drugs such as calcitonin gene-related peptide (CGRP) monoclonal antibodies and second-generation gepants are marketed for migraine treatment. Atogepant, an orally active small molecule, is a potent, selective antagonist of the CGRP receptor and is the only gepant authorized exclusively for episodic migraine prophylaxis in adults. AREAS COVERED Using literature obtained from PubMed, Scopus, Web of Science, Cochrane, and ClinicalTrials.gov (up to February 13rd, 2022), the authors summarize and evaluate the available data on atogepant for the prophylaxis of episodic migraine. EXPERT OPINION From pivotal trials, the efficacy and tolerability of atogepant in episodic migraine prophylaxis seem comparable to those of CGRP monoclonal antibodies, even if comparative studies have not been conducted. To date, limited information is available on atogepant, including the optimal dose and duration of therapy; hence, it is difficult to establish whether it could be a first-line drug for migraine prophylaxis. Furthermore, it is important to evaluate if atogepant use is associated with the risk of cardiovascular and cerebrovascular events, which could result from potent and persistent blockade of vasodilation by CGRP.
Collapse
Affiliation(s)
- Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Anna Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via del Pozzo, Modena, Italy
| |
Collapse
|
19
|
Strassman AM, Melo-Carrillo A, Houle TT, Adams A, Brin MF, Burstein R. Atogepant - an orally-administered CGRP antagonist - attenuates activation of meningeal nociceptors by CSD. Cephalalgia 2022; 42:933-943. [PMID: 35332801 DOI: 10.1177/03331024221083544] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study investigated the mechanism of action of atogepant, a small-molecule CGRP receptor antagonist recently approved for the preventive treatment of episodic migraine, by assessing its effect on activation of mechanosensitive C- and Aδ-meningeal nociceptors following cortical spreading depression. METHODS Single-unit recordings of trigeminal ganglion neurons (32 Aδ and 20 C-fibers) innervating the dura was used to document effects of orally administered atogepant (5 mg/kg) or vehicle on cortical spreading depression-induced activation in anesthetized male rats. RESULTS Bayesian analysis of time effects found that atogepant did not completely prevent the activation of nociceptors at the tested dose, but it significantly reduced response amplitude and probability of response in both the C- and the Aδ-fibers at different time intervals following cortical spreading depression induction. For C-fibers, the reduction in responses was significant in the early phase (first hour), but not delayed phase of activation, whereas in Aδ-fibers, significant reduction in activation was apparent in the delayed phase (second and third hours) but not early phase of activation. CONCLUSIONS These findings identify differences between the actions of atogepant, a small molecule CGRP antagonist (partially inhibiting both Aδ and C-fibers) and those found previously for fremanezumab, a CGRP-targeted antibody (inhibiting Aδ fibers only) and onabotulinumtoxinA (inhibiting C-fibers only)- suggesting that these agents differ in their mechanisms for the preventive treatment of migraine.
Collapse
Affiliation(s)
- Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Aubrey Adams
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| | - Mitchell F Brin
- Allergan, an AbbVie Company, Irvine, CA, USA.,Dept of Neurology, University of California, Irvine, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Moreno-Ajona D, Villar-Martínez MD, Goadsby PJ. New Generation Gepants: Migraine Acute and Preventive Medications. J Clin Med 2022; 11:1656. [PMID: 35329982 PMCID: PMC8953732 DOI: 10.3390/jcm11061656] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a debilitating disease whose clinical and social impact is out of debate. Tolerability issues, interactions, contraindications, and inefficacy of the available medications make new options necessary. The calcitonin-gene-related peptide (CGRP) pathway has shown its importance in migraine pathophysiology and specific medications targeting this have become available. The first-generation CGRP receptor antagonists or gepants, have undergone clinical trials but their development was stopped because of hepatotoxicity. The new generation of gepants, however, are efficacious, safe, and well tolerated as per recent clinical trials. This led to the FDA-approval of rimegepant, ubrogepant, and atogepant. The clinical trials of the available gepants and some of the newer CGRP-antagonists are reviewed in this article.
Collapse
Affiliation(s)
- David Moreno-Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
| | - María Dolores Villar-Martínez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
| | - Peter J. Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (D.M.-A.); (M.D.V.-M.)
- NIHR-Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Hamann T, Rimmele F, Jürgens TP. [CGRP antibodies in migraine prophylaxis : The new standard in migraine treatment?]. Schmerz 2022; 36:59-72. [PMID: 35041064 DOI: 10.1007/s00482-021-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Migraine is associated with a high individual level of suffering. Therefore, an effective preventive treatment is highly important. The spectrum of classical prophylactic drugs has now been expanded to include monoclonal antibodies against calcitonin gene-related peptide (CGRP) and its receptor. These antibodies have shown reliable efficacy compared to placebo and a rapid onset of action with a low rate of side effects and negligible interactions in pivotal studies. Recently, the efficacy of the antibody was shown in many studies even on drug-refractory migraine and migraine associated with medication overuse. Comprehensive head to head comparisons with previously established drugs and among the antibodies are not yet available; however, initial studies suggest better tolerability and efficacy compared to conventional drugs and other antibodies. The role of antibodies in established treatment cascades still needs to be clarified.
Collapse
Affiliation(s)
- Till Hamann
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.
| | - Florian Rimmele
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland
| | - Tim Patrick Jürgens
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.,Neurologisches Zentrum, Klinik für Neurologie, KMG Klinikum Güstrow, Güstrow, Deutschland
| |
Collapse
|
22
|
Abstract
Atogepant (Qulipta™) is an orally administered, small-molecule, calcitonin gene-related peptide (CGRP) receptor antagonist being developed by AbbVie for the prophylaxis of migraine. In September 2021, atogepant was approved in the USA for the preventive treatment of episodic migraine in adults. The drug is also in phase 3 clinical development for the preventive treatment of migraine in various other countries. This article summarizes the milestones in the development of atogepant leading to this first approval for the preventive treatment of episodic migraine in adults.
Collapse
Affiliation(s)
- Emma D Deeks
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
23
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
24
|
Tinsley A, Rothrock JF. Safety and tolerability of preventive treatment options for chronic migraine. Expert Opin Drug Saf 2021; 20:1523-1533. [PMID: 34128746 DOI: 10.1080/14740338.2021.1942839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Relative to migraine generally, chronic migraine (CM) imposes greater disability, healthcare utilization and socioeconomic burden. Six therapies currently possess a credible evidence base for prevention/suppression of CM. This review is intended to provide an assessment of their relative utility, defined as a blend of safety, tolerability and efficacy, focusing in particular on their safety and tolerability.Areas Covered: We discuss all six medications currently FDA-approved for migraine prevention which also specifically possess credible evidence of efficacy in treating CM. While we do address the efficacy of each, our primary emphasis involves assessment of safety and tolerability data derived from clinical trials and post-marketing experience.Expert Opinion: Recent research involving CM has led to the identification of highly targeted and typically well-tolerated therapies. For patients who experience obstacles to accessing these newer therapies, topiramate is available as an evidence-based alternative, but contraindications, drug-drug interactions and poor tolerability may limit or prevent its use. Although data to support such intervention presently is limited, clinically challenging CM cases may benefit from combination therapy. 'Real world' studies are needed to evaluate such polytherapy, along with studies intended to assess the long-term safety of the individual therapies and their use during pregnancy and breast-feeding.
Collapse
Affiliation(s)
- Amanda Tinsley
- Department of Neurology, George Washington University Medical Faculty Associates, Washington, DC, United States of America
| | - John Farr Rothrock
- Department of Neurology, George Washington University Medical Faculty Associates, Washington, DC, United States of America
| |
Collapse
|
25
|
Lu J, Zhang Q, Guo X, Liu W, Xu C, Hu X, Ni J, Lu H, Zhao H. Calcitonin Gene-Related Peptide Monoclonal Antibody Versus Botulinum Toxin for the Preventive Treatment of Chronic Migraine: Evidence From Indirect Treatment Comparison. Front Pharmacol 2021; 12:631204. [PMID: 34012392 PMCID: PMC8126691 DOI: 10.3389/fphar.2021.631204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background: The previously approved botulinum toxin and nowadays promising calcitonin gene-related peptide (CGRP) monoclonal antibody have shown efficacy for preventing chronic migraine (CM). However, there is no direct evidence for their relative effectiveness and safety. In this study, we conducted an indirect treatment comparison to compare the efficacy and safety of CGRP monoclonal antibody with botulinum toxin for the preventive treatment of chronic migraine. Methods: Up to August 31, 2020, we systematically searched PubMed, Embase, and Cochrane Library Central Register of Controlled Trials (Central). Weighted mean difference (WMD) and relative risk (RR) were used to evaluate clinical outcomes. Indirect treatment comparison (ITC) software was used to conduct indirect treatment comparison. Results: Ten studies were pooled with 6,325 patients in our meta-analysis. Both botulinum toxin and CGRP monoclonal antibody demonstrated favorable efficacy in the change of migraine days, headache days, HIT-6 score, and 50% migraine responder rate compared with placebo. In indirect treatment comparison, CGRP monoclonal antibody was superior to botulinum toxin in the frequency of acute analgesics intake (WMD = −1.31, 95% CI: −3.394 to 0.774, p = 0.02113), the rate of treatment-related adverse events (AEs) (RR = 0.664, 95% CI: 0.469 to 0.939, p = 0.04047), and the rate of treatment-related serious adverse events (RR = 0.505, 95% CI: 0.005 to 46.98, p < 0.001). Conclusion: For chronic migraine patients, CGRP monoclonal antibody was slightly better than botulinum toxin in terms of efficacy and safety. In the future, head-to-head trials would be better to evaluate the efficacy and safety between different medications in the prevention of chronic migraine.
Collapse
Affiliation(s)
- Jiajie Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Quanquan Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoning Guo
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunyang Xu
- Department of Neurology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Xiaowei Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|