1
|
Matsumoto T, Sato Y, Kobayashi T, Suzuki K, Kimura A, Soma T, Ito E, Kikuchi T, Kobayashi S, Harato K, Niki Y, Matsumoto M, Nakamura M, Miyamoto T. Adipose-Derived Stem Cell Sheets Improve Early Biomechanical Graft Strength in Rabbits After Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2021; 49:3508-3518. [PMID: 34643475 DOI: 10.1177/03635465211041582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although various reconstruction techniques are available for anterior cruciate ligament (ACL) injuries, a long recovery time is required before patients return to sports activities, as the reconstructed ACL requires time to regain strength. To date, several studies have reported use of mesenchymal stem cells in orthopaedic surgery; however, no studies have used adipose-derived stem cell (ADSC) sheets in ACL reconstruction (ACLR). HYPOTHESIS ADSC sheet transplantation can improve biomechanical strength of the autograft used in ACLR. STUDY DESIGN Controlled laboratory study. METHODS A total of 68 healthy Japanese white rabbits underwent unilateral ACLR with a semitendinosus tendon autograft after random enrollment into a control group (no sheet; n = 34) and a sheet group (ADSC sheet; n = 34). At 2, 4, 8, 16, and 24 weeks after surgery, rabbits in each group were sacrificed to evaluate tendon-bone healing using histological staining, micro-computed tomography, and biomechanical testing. At 24 weeks, scanning transmission electron microscopy of the graft midsubstance was performed. RESULTS The ultimate failure load for the control and sheet groups, respectively, was as follows: 17.2 ± 5.5 versus 37.3 ± 10.3 (P = .01) at 2 weeks, 28.6 ± 1.9 versus 47.4 ± 10.4 (P = .003) at 4 weeks, 53.0 ± 14.3 versus 48.1 ± 9.3 (P = .59) at 8 weeks, 66.2 ± 9.3 versus 95.2 ± 43.1 (P = .24) at 16 weeks, and 66.7 ± 27.3 versus 85.3 ± 29.5 (P = .39) at 24 weeks. The histological score was also significantly higher in the sheet group compared with the control group at early stages up to 8 weeks. On micro-computed tomography, relative to the control group, the bone tunnel area was significantly narrower in the sheet group at 4 weeks, and the bone volume/tissue volume of the tendon-bone interface was significantly greater at 24 weeks. Scanning transmission electron microscopy at 24 weeks indicated that the mean collagen fiber diameter in the midsubstance was significantly greater, as was the occupation ratio of collagen fibers per field of view, in the sheet group. CONCLUSION ADSC sheets improved biomechanical strength, prevented bone tunnel enlargement, and promoted tendon-bone interface healing and graft midsubstance healing in an in vivo rabbit model. CLINICAL RELEVANCE ADSC sheets may be useful for early tendon-bone healing and graft maturation in ACLR.
Collapse
Affiliation(s)
- Tatsuaki Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kunika Suzuki
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Regenerative Medicine iPS Gateway Center, Tokyo, Japan
| | - Atsushi Kimura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoya Soma
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Ito
- Institute for Integrated Sports Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Clinical Research, National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Shu Kobayashi
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kengo Harato
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Advanced Therapy for Musculoskeletal Disorders II, School of Medicine, Keio University, Tokyo, Japan; Department of Musculoskeletal Reconstruction and Regeneration Surgery, School of Medicine, Keio University, Tokyo, Japan; Department of Orthopedic Surgery, Kumamoto University, Kumamoto, Japan
- Investigation performed at Keio University, Tokyo, Japan
| |
Collapse
|
2
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
3
|
Cardona-Ramirez S, Stoker AM, Cook JL, Ma R. Fibroblasts From Common Anterior Cruciate Ligament Tendon Grafts Exhibit Different Biologic Responses to Mechanical Strain. Am J Sports Med 2021; 49:215-225. [PMID: 33259232 DOI: 10.1177/0363546520971852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Different tendons are chosen for anterior cruciate ligament (ACL) reconstruction based on perceived advantages and disadvantages, yet there is a relative paucity of information regarding biologic responsiveness of commonly used tendon grafts to mechanical strain. PURPOSE To evaluate the in vitro responses of graft fibroblasts derived from tendons used for ACL reconstruction to clinically relevant strain levels. STUDY DESIGN Controlled laboratory study. METHODS Twelve quadriceps tendons (QTs), 12 patellar tendons (PTs), and 9 hamstring tendons (HTs) were harvested from skeletally mature dogs (n = 16). Tendon fibroblasts were isolated and seeded onto BioFlex plates (1 × 105 cells/well). Cells were subjected to 3 strain conditions (stress deprivation, 0%; physiologic, 4%; high, 10%) for 5 days. Media were collected for proinflammatory and metabolic assays. RNA was extracted for gene expression analysis using real-time reverse transcription polymerase chain reaction. RESULTS Stress deprivation elicited significantly higher metabolic activity from HT and PT cells than from QT cells (P < .001 and P = .001, respectively). There were no differences in metabolic activity among all 3 graft fibroblasts at physiologic and high strain. COL-1 expression was significantly higher in PT versus HT during physiologic strain (P = .007). No significant differences with COL-3 expression were seen. TIMP-1 (P = .01) expression was higher in PT versus HT under physiologic strain. Scleraxis expression was higher in PT versus HT (P = .007) under physiologic strain. A strain-dependent increase in PGE2 levels occurred for all grafts. At physiologic strain conditions, HT produced significantly higher levels of PGE2 versus QT (P < .001) and PT (P = .005). CONCLUSION Fibroblasts from common ACL graft tissues exhibited different metabolic responses to mechanical strain. On the basis of these data, we conclude that early production of extracellular matrix and proinflammatory responses from ACL grafts are dependent on mechanical loading and graft source. CLINICAL RELEVANCE Graft-specific differences in ACL reconstruction outcomes are known to exist. Our results suggest that there are differences in the biologic responsiveness of cells from the tendon grafts used in ACL reconstruction, which are dependent on strain levels and graft source. The biologic properties of the tissue used for ACL reconstruction should be considered when selecting graft source.
Collapse
Affiliation(s)
- Sebastian Cardona-Ramirez
- Department of Orthopaedic Surgery, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Department of Orthopaedic Surgery, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Department of Orthopaedic Surgery, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Richard Ma
- Department of Orthopaedic Surgery, Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, Shi J, Wang X, Yu JK. Biomimetic Nanosilica-Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cell-Free, One-Step Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904341. [PMID: 31621958 DOI: 10.1002/adma.201904341] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 05/18/2023]
Abstract
Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native-bone-like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical-sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica-functionalized scaffolds can be implanted via a cell/GF-free, one-step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361000, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Zheng Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Zheng-Dong Yang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
5
|
Tisherman R, Wilson K, Horvath A, Byrne K, De Groot J, Musahl V. Allograft for knee ligament surgery: an American perspective. Knee Surg Sports Traumatol Arthrosc 2019; 27:1882-1890. [PMID: 30888445 DOI: 10.1007/s00167-019-05425-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Allografts are frequently use for ligamentous reconstruction at the knee. In the United States, tissue donation and distribution are highly regulated processes with thorough oversight from private and government entities. Allograft is widely available in the United States and allograft procurement is a large industry with varying procurement, sterilization, processing, and distribution procedures. It is important to understand allograft regulation and processing which may affect graft mechanical properties and biological graft integration. METHODS English-language literature, United States government and regulatory agency statues pertaining to allograft procurement, distribution, and usage were reviewed and the findings summarized. RESULTS During the processing of allograft, multiple factors including sterilization procedures, irradiation, storage conditions, and graft type all affect the biomechanical properties of the allograft tissue. Biological incorporation and ligamentization of allograft does occur, but at a slower rate compared with autograft. For ligamentous reconstruction around the knee, allograft offers shorter operative time, no donor-site morbidity, but has shown an increased risk for graft failure compared to autograft. CONCLUSION This article reviews the regulations on graft tissue within the United States, factors affecting the biomechanics of allograft tissue, differences in allograft tissue choices, and the use of allograft for anterior cruciate ligament reconstruction and multiligamentous knee injury reconstruction. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- Robert Tisherman
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue Suite 1010, Pittsburgh, PA, 15213, USA.
| | - Kevin Wilson
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue Suite 1010, Pittsburgh, PA, 15213, USA
| | - Alexandra Horvath
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Kevin Byrne
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue Suite 1010, Pittsburgh, PA, 15213, USA
| | - Joseph De Groot
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue Suite 1010, Pittsburgh, PA, 15213, USA
| | - Volker Musahl
- Department of Orthopaedic Surgery, University of Pittsburgh, 3471 Fifth Avenue Suite 1010, Pittsburgh, PA, 15213, USA
| |
Collapse
|
6
|
Wang L, Cao JG, Liu J. Hybrid graft vs autograft in anterior cruciate ligament reconstruction: a meta-analysis. Ther Clin Risk Manag 2019; 15:487-495. [PMID: 30936710 PMCID: PMC6422411 DOI: 10.2147/tcrm.s187979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose We conducted this meta-analysis to evaluate the efficacy of hybrid grafts in anterior cruciate ligament reconstruction (ACLR). Methods We performed an electronic search of the Cochrane Library, PubMed, Embase, and ScienceDirect from the inception of these databases to February 2018, based on the terms “anterior cruciate ligament or ACL reconstruction”, “autograft”, “hybrid”, and “augment”. Relevant journals and conference proceedings were searched manually. Quality assessment, data extraction, and calculation of data from the included studies were conducted independently by two reviewers using RevMan 5.1. Results One randomized controlled trial and eight nonrandomized controlled trials met inclusion criteria. Larger graft diameters were found in the hybrid-graft group (mean difference −1.47, P=0.0001). There was no significant difference in failure rate (OR 2.13, P=0.21), retearing (OR 2.23, P=0.12), revision of ACLR (OR 1.05, P=0.87) or reoperation (OR 1.27, P=0.35). Subgroup analysis showed that hybrid-graft patients with meniscus injury suffered more revision (OR 4.10, P=0.02) and reoperation (OR 5.74, P=0.001). Both autografts and hybrid grafts performed similarly in most knee-score systems. However, autograft patients had better KT-1000 (mean difference 0.24, P=0.05) and quality-of-life results on the Knee Injury and Osteoarthritis Outcome Score measure (mean difference 7.23, P=0.05). Conclusion This meta-analysis of the current literature indicates similar performance of hybrid or autologous grafts in ACLR, though hybrid grafts had larger diameters than autografts. Other potential factors to influence failure, revision, or postoperative knee function, such as irradiation, age at reconstruction, meniscus injury/treatment, and hybrid-graft remodeling, should be investigated further.
Collapse
Affiliation(s)
- Lei Wang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, People's Republic of China,
| | - Jian-Gang Cao
- Department of Sport Medicine, Tianjin Hospital, Tianjin, People's Republic of China
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin, People's Republic of China,
| |
Collapse
|
7
|
Cone SG, Warren PB, Fisher MB. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng Part C Methods 2017; 23:763-780. [PMID: 28726574 PMCID: PMC5689129 DOI: 10.1089/ten.tec.2017.0227] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Large animal models play an essential role in the study of tissue engineering and regenerative medicine (TERM), as well as biomechanics. The porcine model has been increasingly used to study the musculoskeletal system, including specific joints, such as the knee and temporomandibular joints, and tissues, such as bone, cartilage, and ligaments. In particular, pigs have been utilized to evaluate the role of skeletal growth on the biomechanics and engineered replacements of these joints and tissues. In this review, we explore the publication history of the use of pig models in biomechanics and TERM discuss interspecies comparative studies, highlight studies on the effect of skeletal growth and other biological considerations in the porcine model, and present challenges and emerging opportunities for using this model to study functional TERM.
Collapse
Affiliation(s)
- Stephanie G. Cone
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Paul B. Warren
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Matthew B. Fisher
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|