1
|
Weymann A, Sabashnikov A, Patil NP, Konertz W, Modersohn D, Dohmen PM. Eprosartan improves cardiac function in swine working heart model of ischemia-reperfusion injury. Med Sci Monit Basic Res 2014; 20:55-62. [PMID: 24762635 PMCID: PMC4010602 DOI: 10.12659/msmbr.890444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Eprosartan is an angiotensin II receptor antagonist used as an antihypertensive. We sought to evaluate the regional effect of Eprosartan on postinfarct ventricular remodeling and myocardial function in an isolated swine working heart model of ischemia-reperfusion injury. MATERIAL AND METHODS 22 swine hearts were perfused with the Langendorff perfusion apparatus under standard experimental conditions. Myocardial ischemia was induced by a 10-min left anterior descending artery ligation. Hearts were reperfused with either saline (control group, n=11), or Eprosartan (treatment group, n=11). Left ventricular pressure (LVP) and regional heart parameters such as intramyocardial pressure (IMP), wall thickening rate (WTh), and pressure-length-loops (PLL) were measured at baseline and after 30 min of reperfusion. RESULTS Measured parameters were statistically similar between the 2 groups at baseline. The administration of Eprosartan led to a significantly better recovery of IMP and WTh: 44.4±2.5 mmHg vs. 51.2±3.3 mmHg, p<0.001 and 3.8±0.4 µm vs. 4.4±0.3 µm, p=0.001, respectively. PLL were also significantly higher in the treatment group following reperfusion (21694±3259 units vs. 31267±3429 units, p<0.01). There was no difference in the LVP response to Eprosartan versus controls (63.6±3.0 mmHg vs. 62.5±3.1 mmHg, p=0.400). CONCLUSIONS Pre-treatment with Eprosartan is associated with a significant improvement in regional cardiac function under ischemic conditions. Pharmacological treatment with eprosartan may exert a direct cardioprotective effect on ischemic myocardium.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Cardiac Surgery, Heart Center – University of Heidelberg, Heidelberg, Germany
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, U.K
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, U.K
| | - Nikhil P. Patil
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, U.K
| | - Wolfgang Konertz
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Diethelm Modersohn
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pascal M. Dohmen
- Department of Cardiac Surgery, Heart Center Leipzig, University of Leipzig, Leipzig, Germany
- Department of Cardiothoracic Surgery, University of the Free State, Bloemfontain, South Africa
| |
Collapse
|
2
|
Schuster A, Grünwald I, Chiribiri A, Southworth R, Ishida M, Hay G, Neumann N, Morton G, Perera D, Schaeffter T, Nagel E. An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques. J Cardiovasc Magn Reson 2010; 12:53. [PMID: 20849589 PMCID: PMC2950014 DOI: 10.1186/1532-429x-12-53] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Novel cardiovascular magnetic resonance (CMR) techniques and imaging biomarkers are often validated in small animal models or empirically in patients. Direct translation of small animal CMR protocols to humans is rarely possible, while validation in humans is often difficult, slow and occasionally not possible due to ethical considerations. The aim of this study is to overcome these limitations by introducing an MR-compatible, free beating, blood-perfused, isolated pig heart model for the development of novel CMR methodology. METHODS 6 hearts were perfused outside of the MR environment to establish preparation stability. Coronary perfusion pressure (CPP), coronary blood flow (CBF), left ventricular pressure (LVP), arterial blood gas and electrolyte composition were monitored over 4 hours. Further hearts were perfused within 3T (n = 3) and 1.5T (n = 3) clinical MR scanners, and characterised using functional (CINE), perfusion and late gadolinium enhancement (LGE) imaging. Perfusion imaging was performed globally and selectively for the right (RCA) and left coronary artery (LCA). In one heart the RCA perfusion territory was determined and compared to infarct size after coronary occlusion. RESULTS All physiological parameters measured remained stable and within normal ranges. The model proved amenable to CMR at both field strengths using typical clinical acquisitions. There was good agreement between the RCA perfusion territory measured by selective first pass perfusion and LGE after coronary occlusion (37% versus 36% of the LV respectively). CONCLUSIONS This flexible model allows imaging of cardiac function in a controllable, beating, human-sized heart using clinical MR systems. It should aid further development, validation and clinical translation of novel CMR methodologies, and imaging sequences.
Collapse
Affiliation(s)
- Andreas Schuster
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | | | - Amedeo Chiribiri
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | - Richard Southworth
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | - Masaki Ishida
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | | | | | - Geraint Morton
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | - Divaka Perera
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Department of Cardiology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Tobias Schaeffter
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| | - Eike Nagel
- King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre and Wellcome Trust and EPSRC Medical Engineering Centre at Guy's and St. Thomas' NHS Foundation Trust, Division of Imaging Sciences, The Rayne Institute, London, UK
| |
Collapse
|
3
|
Pfeifer L, Gruenwald I, Welker A, Stahn RM, Stein K, Rex A. Fluorimetric characterisation of metabolic activity of ex vivo perfused pig hearts. BIOMED ENG-BIOMED TE 2007; 52:193-9. [PMID: 17408379 DOI: 10.1515/bmt.2007.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autofluorescence of tissues and organs is an indicator of the physiological state of cells. The aim of the study was to investigate whether fluorimetric determination of the redox state of the ex vivo perfused pig heart can provide fast online detection of progressive changes in heart muscle tissue. Measurements on six organs perfused in a four-chamber working heart model were performed using a spectroscopic method exploiting the specific and different fluorescence lifetimes of intrinsic fluorophores such as NADH and flavins and providing a means of internal signal referencing. It was shown that the redox potential of heart muscle tissue can be assessed by fluorescence measurement. In the steady-state phase of the beating heart, spectroscopic measurements revealed a change in redox state from an initial constant level to a continuous decrease, accompanied by a decrease in heart performance and indications of changes in electrolyte equilibrium (K(+) concentration). At the same time, troponin I levels in the perfusate increased. The results indicate that fluorimetric determination of heart muscle metabolic activity yields reliable information about the functional status of the ex vivo heart and may be advantageous for the optimisation of ex vivo organ models.
Collapse
Affiliation(s)
- Lutz Pfeifer
- IOM Innovative Optische Messtechnik GmbH, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Laser Literature Watch. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2003; 21:239-46. [PMID: 13678463 DOI: 10.1089/104454703768247837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|