1
|
Mersanne A, Foresti R, Martini C, Caffarra Malvezzi C, Rossi G, Fornasari A, De Filippo M, Freyrie A, Perini P. In-House Fabrication and Validation of 3D-Printed Custom-Made Medical Devices for Planning and Simulation of Peripheral Endovascular Therapies. Diagnostics (Basel) 2024; 15:8. [PMID: 39795536 PMCID: PMC11719810 DOI: 10.3390/diagnostics15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Objectives: This study aims to develop and validate a standardized methodology for creating high-fidelity, custom-made, patient-specific 3D-printed vascular models that serve as tools for preoperative planning and training in the endovascular treatment of peripheral artery disease (PAD). Methods: Ten custom-made 3D-printed vascular models were produced using computed tomography angiography (CTA) scans of ten patients diagnosed with PAD. CTA images were analyzed using Syngo.via by a specialist to formulate a medical prescription that guided the model's creation. The CTA data were then processed in OsiriX MD to generate the .STL file, which is further refined in a Meshmixer. Stereolithography (SLA) 3D printing technology was employed, utilizing either flexible or rigid materials. The dimensional accuracy of the models was evaluated by comparing their CT scan images with the corresponding patient data, using OsiriX MD. Additionally, both flexible and rigid models were evaluated by eight vascular surgeons during simulations in an in-house-designed setup, assessing both the technical aspects and operator perceptions of the simulation. Results: Each model took approximately 21.5 h to fabricate, costing €140 for flexible and €165 for rigid materials. Bland-Alman plots revealed a strong agreement between the 3D models and patient anatomy, with outliers ranging from 4.3% to 6.9%. Simulations showed that rigid models performed better in guidewire navigation and catheter stability, while flexible models offered improved transparency and lesion treatment. Surgeons confirmed the models' realism and utility. Conclusions: The study highlights the cost-efficient, high-fidelity production of 3D-printed vascular models, emphasizing their potential to enhance training and planning in endovascular surgery.
Collapse
Affiliation(s)
- Arianna Mersanne
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.F.)
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
- Italian National Research Council, Institute of Materials for Electronics and Magnetism (CNR-IMEM), 43124 Parma, Italy
| | - Chiara Martini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.F.)
- Diagnostic Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | | | - Giulia Rossi
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy
| | - Anna Fornasari
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Maggiore Hospital, Via Gramsci 14, 43126 Parma, Italy
| | - Antonio Freyrie
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.F.)
| | - Paolo Perini
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (R.F.)
| |
Collapse
|
2
|
Catasta A, Martini C, Mersanne A, Foresti R, Bianchini Massoni C, Freyrie A, Perini P. Systematic Review on the Use of 3D-Printed Models for Planning, Training and Simulation in Vascular Surgery. Diagnostics (Basel) 2024; 14:1658. [PMID: 39125534 PMCID: PMC11312310 DOI: 10.3390/diagnostics14151658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The use of 3D-printed models in simulation-based training and planning for vascular surgery is gaining interest. This study aims to provide an overview of the current applications of 3D-printing technologies in vascular surgery. We performed a systematic review by searching four databases: PubMed, Web of Science, Scopus, and Cochrane Library (last search: 1 March 2024). We included studies considering the treatment of vascular stenotic/occlusive or aneurysmal diseases. We included papers that reported the outcome of applications of 3D-printed models, excluding case reports or very limited case series (≤5 printed models or tests/simulations). Finally, 22 studies were included and analyzed. Computed tomography angiography (CTA) was the primary diagnostic method used to obtain the images serving as the basis for generating the 3D-printed models. Processing the CTA data involved the use of medical imaging software; 3DSlicer (Brigham and Women's Hospital, Harvard University, Boston, MA), ITK-Snap, and Mimics (Materialise NV, Leuven, Belgium) were the most frequently used. Autodesk Meshmixer (San Francisco, CA, USA) and 3-matic (Materialise NV, Leuven, Belgium) were the most frequently employed mesh-editing software during the post-processing phase. PolyJet™, fused deposition modeling (FDM), and stereolithography (SLA) were the most frequently employed 3D-printing technologies. Planning and training with 3D-printed models seem to enhance physicians' confidence and performance levels by up to 40% and lead to a reduction in the procedure time and contrast volume usage to varying extents.
Collapse
Affiliation(s)
- Alexandra Catasta
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Martini
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Diagnostic Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Arianna Mersanne
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
- Italian National Research Council, Institute of Materials for Electronics and Magnetism (CNR-IMEM), 43124 Parma, Italy
| | - Claudio Bianchini Massoni
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Antonio Freyrie
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Paolo Perini
- Vascular Surgery, Cardio-Thoracic and Vascular Department, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
3
|
Peri A, Marconi S, Gallo V, Mauri V, Negrello E, Abelli M, Ticozzelli E, Caserini O, Pugliese L, Auricchio F, Pietrabissa A. Three-D-printed simulator for kidney transplantation. Surg Endosc 2021; 36:844-851. [PMID: 34782966 DOI: 10.1007/s00464-021-08788-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/17/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Three-Dimensional (3D) printing technology can be used to manufacture training platforms for surgeons. Kidney transplantation offers a suitable model, since it mostly entails vascular and ureteric anastomoses. METHODS A new simulation platform for surgical training in kidney transplantation was realized and validated in this study. A combination of different 3-D printing technology was used to reproduce the key anatomy of lower abdomen, of pelvis, and of a kidney graft, including their mechanical properties. RESULTS Thirty transplantations were performed by two junior trainees with no previous experience in the area. Analysis of the times required to perform the simulated transplantation showed that proficiency was reached after about ten cases, as indicated by a flattening of the respective curves that corresponded to a shortening of about 40% and 47%, respectively, of the total time initially needed to perform the whole simulated transplantation. Although an objective assessment of the technical quality of the anastomoses failed to show a significant improvement throughout the study, a growth in self-confidence with the procedure was reported by both trainees. CONCLUSION The quality of the presented simulation platform aimed at reproducing in the highest possible way a realistic model of the operative setting and proved effective in providing an integrated training environment where technical skills are enhanced together with a team-training experience. As a result the trainees' self-confidence with the procedure resulted enforced. Three-D--printed models can also offer pre-operative patient-specific training when anatomical variants are anticipated by medical imaging. An analysis of the costs related to the use of this platform is also provided and discussed.
Collapse
Affiliation(s)
- Andrea Peri
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Marconi
- Department of Architecture and Civil Engineering, University of Pavia, Pavia, Italy
| | - Virginia Gallo
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Massimo Abelli
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ottavia Caserini
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luigi Pugliese
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Architecture and Civil Engineering, University of Pavia, Pavia, Italy
| | - Andrea Pietrabissa
- Department of Surgery, University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. .,, Viale Golgi 69, 27100, Pavia, Italy.
| |
Collapse
|
4
|
Jin Z, Li Y, Yu K, Liu L, Fu J, Yao X, Zhang A, He Y. 3D Printing of Physical Organ Models: Recent Developments and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101394. [PMID: 34240580 PMCID: PMC8425903 DOI: 10.1002/advs.202101394] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Indexed: 05/05/2023]
Abstract
Physical organ models are the objects that replicate the patient-specific anatomy and have played important roles in modern medical diagnosis and disease treatment. 3D printing, as a powerful multi-function manufacturing technology, breaks the limitations of traditional methods and provides a great potential for manufacturing organ models. However, the clinical application of organ model is still in small scale, facing the challenges including high cost, poor mimicking performance and insufficient accuracy. In this review, the mainstream 3D printing technologies are introduced, and the existing manufacturing methods are divided into "directly printing" and "indirectly printing", with an emphasis on choosing suitable techniques and materials. This review also summarizes the ideas to address these challenges and focuses on three points: 1) what are the characteristics and requirements of organ models in different application scenarios, 2) how to choose the suitable 3D printing methods and materials according to different application categories, and 3) how to reduce the cost of organ models and make the process simple and convenient. Moreover, the state-of-the-art in organ models are summarized and the contribution of 3D printed organ models to various surgical procedures is highlighted. Finally, current limitations, evaluation criteria and future perspectives for this emerging area are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Linxiang Liu
- Zhejiang University HospitalZhejiang UniversityHangzhouZhejiang310027China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Aiguo Zhang
- Department of OrthopedicsWuxi Children's Hospital affiliated to Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of Materials Processing and MoldZhengzhou UniversityZhengzhou450002China
| |
Collapse
|
5
|
Leal BBJ, Wakabayashi N, Oyama K, Kamiya H, Braghirolli DI, Pranke P. Vascular Tissue Engineering: Polymers and Methodologies for Small Caliber Vascular Grafts. Front Cardiovasc Med 2021; 7:592361. [PMID: 33585576 PMCID: PMC7873993 DOI: 10.3389/fcvm.2020.592361] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (<5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna B J Leal
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Naohiro Wakabayashi
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Kamiya
- Division of Cardiac Surgery, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Daikelly I Braghirolli
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Post-graduate Program in Physiology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|
6
|
Conti M, Marconi S. Three-dimensional printing for biomedical applications. Int J Artif Organs 2019; 42:537-538. [DOI: 10.1177/0391398819860846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|