1
|
Jabeen N, Roy A, Senthil R. Evaluation and In Vitro Study of an Electrospun Bone Tissue Membrane for Bone Regeneration: A Novel Perspective. Cureus 2024; 16:e52830. [PMID: 38406062 PMCID: PMC10884715 DOI: 10.7759/cureus.52830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives In the present study, electrospun bone tissue membrane (EBTM) was prepared using polyvinylidene fluoride (PVDF), gelatin (gel), and demineralized bone matrix (DBM) by electrospinning method for its potential application in bone tissue regeneration. Materials and methods The prepared EBTM was evaluated using high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX; Silicon Drift 2017, USA), thermogravimetric analysis (TGA), and mechanical properties such as tensile strength (MPa), elongation at break (%), flexibility (%), and water absorption (%). In vitro bioactivity testing of EBTM using simulated body fluid (SBF) was performed after 14 days of immersion. Cell viability was tested using human osteoblast-like cells (MG-63) to prove biocompatibility. Results EBTM had superior surface morphology, thermal stability, and mechanical strength. The mechanical properties of EBTM were promising, enabling its use in tissue engineering. Bioactivity test showed that the EBTM surface developed calcium (Ca) and phosphate (P) after 14 days of being immersed in SBF. Additionally, a biocompatibility investigation revealed that EBTM was covered with more viable cells. Conclusion EBTM with sufficient mechanical strength, thermal stability, surface morphology, Ca deposition, and biocompatibility could serve as a plausible material for bone tissue engineering (skin, ligament, cartilage, and bone).
Collapse
Affiliation(s)
- Nazurudeen Jabeen
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
2
|
Dai Y, Xin L, Hu S, Xu S, Huang D, Jin X, Chen J, Chan RWS, Ng EHY, Yeung WSB, Ma L, Zhang S. A construct of adipose-derived mesenchymal stem cells-laden collagen scaffold for fertility restoration by inhibiting fibrosis in a rat model of endometrial injury. Regen Biomater 2023; 10:rbad080. [PMID: 37808957 PMCID: PMC10551231 DOI: 10.1093/rb/rbad080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Severe endometrium damage causes pathological conditions such as thin endometrium and intrauterine adhesion, resulting in uterine factor infertility. Mesenchymal stem cell (MSC) therapy is a promising strategy in endometrial repair; yet, exogenous MSCs still raise concerns for safety and ethical issues. Human adipose-derived mesenchymal stem cells (ADMSCs) residing in adipose tissue have high translational potentials due to their autologous origin. To harness the high translation potentials of ADMSC in clinical endometrium regeneration, here we constructed an ADMSCs composited porous scaffold (CS/ADMSC) and evaluated its effectiveness on endometrial regeneration in a rat endometrium-injury model. We found that CS/ADMSC intrauterine implantation (i) promoted endometrial thickness and gland number, (ii) enhanced tissue angiogenesis, (iii) reduced fibrosis and (iv) restored fertility. We ascertained the pro-proliferation, pro-angiogenesis, immunomodulating and anti-fibrotic effects of CS/ADMSC in vitro and revealed that the CS/ADMSC influenced extracellular matrix composition and organization by a transcriptomic analysis. Our results demonstrated the effectiveness of CS/ADMSC for endometrial regeneration and provided solid proof for our future clinical study.
Collapse
Affiliation(s)
- Yangyang Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liaobing Xin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Sentao Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Rachel Wah Shan Chan
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China
| | - Ernest Hung Yu Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China
| | - Lie Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
3
|
Ozdemir S, Yalcin-Enis I, Yalcinkaya B, Yalcinkaya F. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. MEMBRANES 2022; 12:929. [PMID: 36295688 PMCID: PMC9607146 DOI: 10.3390/membranes12100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|