1
|
Xu X, Feng W, Guo L, Huang X, Shi B. Controlled synthesis of distiller's grains biochar for turbidity removal in Baijiu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161382. [PMID: 36621480 DOI: 10.1016/j.scitotenv.2022.161382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Resource utilization of distiller's grains (DGs) is crucial for realizing sustainable development of Baijiu industry. In the prevent investigation, a low-cost activated biochar (DGABC) suitable for removing turbidity from low-alcohol Baijiu was prepared by the controlled pyrolysis of DGs, followed by steam activation. The as-prepared biochar featured a large specific surface area (320-480 m2/g) and pore volume (0.45-0.47 cm3/g). Importantly, the DGABC possessed remarkable exterior hydrophily and interior lipophilicity, which guaranteed its good dispersion in alcohol-water system as well as an efficient adsorption to the components with long lipophilic chain. As a result, the DGABC could efficiently remove the turbidity in low-alcohol Baijiu, which was mainly derived from the long lipophilic chain components, such as ethyl palmitate. Meanwhile, most of the flavor esters that had a shorter lipophilic chain and lower hydrophobicity were well kept in the low-alcohol Baijiu. Therefore, this work provided a promising strategy for DGs recycling in Baijiu industry.
Collapse
Affiliation(s)
- Xiuzhen Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weiqin Feng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lijun Guo
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Xin Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Cai Y, Zhu M, Meng X, Zhou JL, Zhang H, Shen X. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review. BIORESOURCE TECHNOLOGY 2022; 351:126924. [PMID: 35272033 DOI: 10.1016/j.biortech.2022.126924] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 05/16/2023]
Abstract
This paper reviewed the mechanisms of biochar in relieving ammonia inhibition. Biochar affects nitrogen-rich waste's anaerobic digestion (AD) performance through four ways: promotion of direct interspecies electron transfer (DIET) and microbial growth, adsorption, pH buffering, and provision of nutrients. Biochar enhances the DIET pathway by acting as an electron carrier. The role of DIET in relieving ammonia nitrogen may be exaggerated because many related studies don't provide definite evidence. Therefore, some bioinformatics technology should be used to assist in investigating DIET. Biochar absorbs ammonia nitrogen by chemical adsorption (electrostatic attraction, ion exchange, and complexation) and physical adsorption. The absorption efficiency, mainly affected by the properties of biochar, pH and temperature of AD, can reach 50 mg g-1 on average. The biochar addition can buffer pH by reducing the concentrations of VFAs, alleviating ammonia inhibition. In addition, biochar can release trace elements and increase the bioavailability of trace elements.
Collapse
Affiliation(s)
- Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; Department of Biochemical Conversion, Deutsches Biomassforschungszentrum Gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany.
| | - Mingming Zhu
- Centre for Climate and Environmental Protection, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control Beijing 100048, China
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Huan Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing 210014, China
| | - Xia Shen
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A and F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Wang T, Li G, Yang K, Zhang X, Wang K, Cai J, Zheng J. Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: Characteristics, mechanisms and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146295. [PMID: 33721637 DOI: 10.1016/j.scitotenv.2021.146295] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The adsorption treatment of ammonium-containing wastewater has attracted significant global attention. Most enhanced adsorption methods employ chemical modification, and there are few reports on physical activation. We present a physical activation to explore whether physical ultrasound may enhance the adsorption performance and comprehensive utilisation of a new forestry waste, Caragana korshinskii was used as a feedstock to prepare activated biochar (ACB) by controlling the pyrolysis temperatures and ultrasound parameters. The optimal parameters were determined via batch adsorption of NH4+, and the adsorption characteristics were assessed by 8 kinds of models and influence experiments. Moreover, the physicochemical properties of ACB during the pyrolysis process were investigated, and the ultrasonic activation and adsorption mechanisms were discussed using multiple characterisation techniques. Additionally, the cost analysis, the safety of the ultrasonic process and disposal method also were evaluated. The results showed that the ultrasonic activation significantly enhanced the NH4+ adsorption efficiency of biochar by approximately 5 times. ACB exhibited the best performance at 500 °C with an ultrasonic activation time of 480 min, frequency of 45 kHz, and power of 700 W. The ultrasonic activation reduced the biochar ash and induced pore formation, which increased the specific surface area through cavitation corrosion and micro-acoustic flow mechanism. The NH4+ adsorption mechanisms comprised physicochemical processes, of which physical adsorption was dominant. The preparation cost of 1 kg ACB was about 0.42 US dollar, and no secondary pollution occurred in the activation process. The findings prove that ultrasonic technology is efficient and convenient for enhancing biochar adsorption performance, and thus is suitable for industrial applications and promotion.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Gaoliang Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Kaiqi Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xiaoyuan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ke Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinjun Cai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute of Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China.
| |
Collapse
|
4
|
Wang T, Liu H, Duan C, Xu R, Zhang Z, She D, Zheng J. The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3391. [PMID: 32751862 PMCID: PMC7435931 DOI: 10.3390/ma13153391] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Carbonization of biomass can prepare carbon materials with excellent properties. In order to explore the comprehensive utilization and recycling of Caragana korshinskii biomass, 15 kinds of Caragana korshinskii biochar (CB) were prepared by controlling the oxygen-limited pyrolysis process. Moreover, we pay attention to the dynamic changes of microstructure of CB and the by-products. The physicochemical properties of CB were characterized by Scanning Electron Microscope (SEM), BET-specific surface area (BET-SSA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Gas chromatography-mass spectrometry (GC-MS). The optimal preparation technology was evaluated by batch adsorption application experiment of NO3-, and the pyrolysis mechanism was explored. The results showed that the pyrolysis temperature is the most important factor in the properties of CB. With the increase of temperature, the content of C, pH, mesoporous structure, BET-SSA of CB increased, the cation exchange capacity (CEC) decreased and then increased, but the yield and the content of O and N decreased. The CEC, pH, and BET-SSA of CB under each pyrolysis process were 16.64-81.4 cmol·kg-1, 6.65-8.99, and 13.52-133.49 m2·g-1, respectively. CB contains abundant functional groups and mesoporous structure. As the pyrolysis temperature and time increases, the bond valence structure of C 1s, Ca 2p, and O 1s is more stable, and the phase structure of CaCO3 is more obvious, where the aromaticity increases, and the polarity decreases. The CB prepared at 650 °C for 3 h presented the best adsorption performance, and the maximum theoretical adsorption capacity for NO3- reached 120.65 mg·g-1. The Langmuir model and pseudo-second-order model can well describe the isothermal and kinetics adsorption process of NO3-, respectively. Compared with other cellulose and lignin-based biomass materials, CB showed efficient adsorption performance of NO3- without complicated modification condition. The by-products contain bio-soil and tail gas, which are potential source of liquid fuel and chemical raw materials. Especially, the bio-oil of CB contains α-d-glucopyranose, which can be used in medical tests and medicines.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hongtao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Cuihua Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Rui Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling 712100, China; (T.W.); (H.L.); (C.D.); (R.X.); (Z.Z.); (D.S.)
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| |
Collapse
|