1
|
Lin L, Cao H, Wu B, Wang J, Song L, Chan W, Li G, Zhou L, Xiao J, Zhu L, Lian Y. Association between occupational exposure to gasoline and anemia: a retrospective cohort study in China. BMC Public Health 2025; 25:330. [PMID: 39871221 PMCID: PMC11771115 DOI: 10.1186/s12889-025-21575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Anemia is a major global burden, and occupational gasoline exposure is a common occupational hazard factor. Although previous studies have shown that there is a potential relationship between occupational gasoline exposure and the increase of anemia prevalence, this relationship has not been fully explored. The current cohort study aimed to investigate the association between occupational exposure to gasoline and anemia, and the effect of gasoline concentration on hemoglobin (Hb) levels. METHODS This retrospective cohort study collected baseline data from 1451 workers, including 605 exposed to gasoline and 846 not exposed to gasoline. Participants were enrolled in 2013-2015, and follow-up in 2019. Anemia was diagnosed according to WHO guidelines on hemoglobin cutoffs to define anemia in individuals and populations. Occupational exposure concentration of gasoline was measured based on the Chinese national standard (GBZ-T300.62-2017). Logistic regression was conducted to analyze the associations of occupational exposure to gasoline and anemia. RESULTS The incidence of anemia among workers exposed to gasoline was significantly higher than that among non-exposed workers (relative risk [RR] = 11.03, 95% confidence interval [CI]: 9.45-12.53). The risks of anemia were significantly higher among participants exposed to gasoline concentrations ≥ 43.20 mg/m³ (RR = 13.92, 95%CI: 12.25-15.28), 18.01-43.19 mg/m³ (RR = 12.93, 95%CI: 11.07-14.51), and 0.01-18.00 mg/m³ (RR = 5.49, 95%CI: 3.96-7.32) compared with the control non-exposed group. The risk of anemia was significantly higher among exposed workers, after adjusting for all confounding factors. There was also a significant negative correlation between gasoline exposure concentration and hemoglobin level. CONCLUSIONS Occupational exposure to gasoline is associated with an increased incidence of anemia, with a positive correlation between occupational gasoline exposure levels and the severity of anemia. The incidence and severity of anemia increase while hemoglobin levels decrease in line with increasing gasoline exposure concentrations. These findings emphasize the importance of assessing anemia in workers exposed to gasoline.
Collapse
Grants
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
- BK20211331 the Natural Science Foundation of Jiangsu Province, China
Collapse
Affiliation(s)
- Lan Lin
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Hongmei Cao
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Beining Wu
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Jin Wang
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Lin Song
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Weiling Chan
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Geyang Li
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Li Zhou
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China
| | - Jing Xiao
- Department of Occupational Environmental Toxicology, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Lejia Zhu
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China.
| | - Yulong Lian
- Division of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Se Yuan Road, No 9, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
2
|
Ranjan H, Senthil Kumar S, Priscilla S, Swaminathan S, Umezawa M, Sheik Mohideen S. Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2203-2214. [PMID: 39484827 DOI: 10.1039/d4em00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using Drosophila melanogaster, fruit flies, as a model organism. Drosophila were exposed to PE MPs orally at concentrations of 1 mg ml-1 and 10 mg ml-1 agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activity. The expression levels of key genes (Hsp70Bc, rpr, and p53) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of rpr, p53, and Hsp70Bc genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on Drosophila, including behavioural impairment, oxidative stress, and activation of stress response pathways.
Collapse
Affiliation(s)
- Himanshu Ranjan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Swetha Senthil Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Sharine Priscilla
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Subhashini Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| |
Collapse
|
3
|
Qiu H, Chuang KJ, Fan YC, Chang TP, Chuang HC, Wong ELY, Bai CH, Ho KF. Association between ambient BTEX mixture and neurological hospitalizations: A multicity time-series study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115239. [PMID: 37441946 DOI: 10.1016/j.ecoenv.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Benzene, toluene, ethylbenzene, and xylenes, collectively known as BTEX, are hazardous chemical mixtures, and their neurological health effects have not been thoroughly evaluated. We examined the association between BTEX exposure and neurological hospital admissions. METHODS This was a multicity time-series study conducted in five major Taiwanese cities. Daily hospital admission records for diseases of the nervous system from January 1, 2016, to December 31, 2017, were collected from the National Health Insurance Research Database. Ambient BTEX and criteria pollutant concentrations and weather factors were collected from Photochemical Assessment Monitoring Stations. We applied a Poisson generalized additive model (GAM) and weighted quantile sum regression to calculate city-specific effect estimates for BTEX and conducted a random-effects meta-analysis to pool estimates. RESULTS We recorded 68 neurological hospitalizations per day during the study period. The daily mean BTEX mixture concentrations were 22.5 µg/m3, ranging from 18.3 µg/m3 in Kaohsiung to 27.0 µg/m3 in Taichung, and toluene (13.6 µg/m3) and xylene (5.8 µg/m3) were the dominant chemicals. Neurological hospitalizations increased by an average of 1.6 % (95 % CI: 0.6-2.6 %) for every interquartile range (15.8 µg/m3) increase in BTEX at lag 0 estimated using a GAM model. A quartile increase in the weighted sum of BTEX exposure was associated with a 1.7 % (95 % CI: 0.6-2.8 %) increase in daily neurological hospitalizations. CONCLUSION We found consistent acute adverse effects of BTEX on neurological hospitalizations in Taiwan, with toluene and xylene as the dominant chemicals. These findings aid the development of more targeted public health interventions.
Collapse
Affiliation(s)
- Hong Qiu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Eliza Lai-Yi Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Zhu QF, Lu LL, Fang YY, Wu J, Huang ZY, Zheng XW, Song HX, Aschner M, Song C, Jiang YM. Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
Affiliation(s)
- Qi-Feng Zhu
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
- Department of Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10, Hua-dong Rd., Nanning, 530011, Guangxi, China
| | - Li-Li Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jie Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Institute of Clinical Medicine Guangxi Medical University, Nanning, 530021, China
| | - Zhao-Ying Huang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, China
| | - Xiao-Wei Zheng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ce Song
- Department of Centre for Translational Medical Research in Integrative Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, No. 10, Hua-dong Rd., Nanning, 530011, Guangxi, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
6
|
Szyller J, Kozakiewicz M, Siermontowski P, Kaczerska D. Oxidative Stress, HSP70/HSP90 and eNOS/iNOS Serum Levels in Professional Divers during Hyperbaric Exposition. Antioxidants (Basel) 2022; 11:antiox11051008. [PMID: 35624872 PMCID: PMC9137907 DOI: 10.3390/antiox11051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) have protective effects against oxidative stress and decompression sickness. Nitric oxide may reduce bubble formation during decompression and its activity is regulated by HSPs. A simulated dive can cause the HSP response. The aim of this study was to describe the effect of simulated dives on the antioxidant system, HSPs, and nitric oxide synthase response and demonste the relationship between the concentration of HSPs and the intensification of oxidative stress. A total of 20 healthy professional divers took part in training, consisting of simulated dry dives in a hyperbaric chamber and split into experiment I (30 m exposure, 400 kPa) and experiment II (60 m exposure, 700 kPa) over 24 h. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the concentrations of malondialdehyde (MDA), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), endothelial (eNOS) and inducible (iNOS) nitric oxide synthase were measured. Increases in the activity of SOD and MDA concentration were demonstrated. The activity of GPx depended on the dive profile. The HSP70 serum level in both experiments was significantly lower after the dives. The mean HSP90 level was significantly higher after the simulated dive at 60 m. A significant relationship between HSP concentration and SOD/GPx activity was demonstrated. eNOS concentration increased after 60 m exposure. No change in iNOS concentration was observed. In conclusions, the simulated dive significantly affected the antioxidant system, heat shock protein expression and nitric oxide synthase; however, the changes depend on the diving conditions. There is a relationship between the expression of HSPs and the intensity of oxidative stress.
Collapse
Affiliation(s)
- Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A Str., 50-556 Wroclaw, Poland
- Correspondence:
| | - Mariusz Kozakiewicz
- Division of Biochemistry and Biogerontology, Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum, Dębowa 3 Str., 85-626 Bydgoszcz, Poland;
| | - Piotr Siermontowski
- Department of Underwater Works Technology, Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Śmidowicza 69 Str., 81-127 Gdynia, Poland;
| | - Dorota Kaczerska
- Department of Physiotherapy and Health Sciences, Faculty of Dietetics, Gdańsk College of Health, Pelplińska 7 Str., 80-335 Gdańsk, Poland;
| |
Collapse
|
7
|
Dehghan Haghighi J, Hormozi M, Payandeh A. Blood serum levels of selected biomarkers of oxidative stress among printing workers occupationally exposed to low-levels of toluene and xylene. Toxicol Ind Health 2022; 38:299-307. [DOI: 10.1177/07482337221092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Printing workers (PWs) are exposed to a mixture of solvents, yet the health risks associated with such exposuer are unknown. This study aimed to compare the serum levels of selected biomarkers of oxidative stress among occupationally exposed PWs to low-level of toluene and xylenes and unexposed controls. Associations between levels of such biomarkers and occupational exposures to toluene and xylene were also investigated. Urinary levels of hippuric acid (HA) and methyl hippuric acids (MHAs) as exposure biomarkers of toluene and xylenes, respectively, and serum levels of oxidative stress biomarkers, including total antioxidant capacity (TAC), malondialdehyde (MDA), and the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were measured among the 84 subjects, comprising 44 PWs and 40 unexposed subjects. Mean concentrations of urinary HA and MHAs of PWs showed a significant increase compared with the unexposed controls. Although levels of urinary biomarkers of exposure to toluene (HA) and xylenes (MHAs) were well below the biological exposure indices (BEIs; ACGHI), PWs presented significantly increased serum levels of MDA, and significantly decreased serum activities of SOD and GPx compared to the unexposed controls. However, for serum TAC and CAT activity, no significant difference was observed between the two groups. Correlation analyses indicated that urinary levels of HA and MHAs were positively correlated with MDA levels and negatively correlated with GPx and SOD. Our study suggested that the alterations evidenced in serum levels of MDA, SOD, and GPx could be involved in the oxidative stress caused by co-exposure to low levels of toluene and xylene. Further investigation is needed to clarify the effect of low-level occupational exposure to solvents among PWs.
Collapse
Affiliation(s)
- Javid Dehghan Haghighi
- Department of Community Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Hormozi
- Department of Occupational Health, School of Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Abolfazl Payandeh
- Department of Biostatistics & Epidemiology, School of health, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Tan Y, Cheng H, Su C, Chen P, Yang X. PI3K/Akt Signaling Pathway Ameliorates Oxidative Stress-Induced Apoptosis upon Manganese Exposure in PC12 Cells. Biol Trace Elem Res 2022; 200:749-760. [PMID: 33772736 DOI: 10.1007/s12011-021-02687-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Manganese (Mn)-induced neurotoxicity has aroused public concerns for many years, but its precise mechanism is still poorly understood. Herein, we report the impacts of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway in mediating neurological effects induced by manganese sulfate (MnSO4) exposure in PC12 cells. In this study, cells were treated with MnSO4 for 24 h in the absence or presence of LY294002 (a special inhibitor of PI3K). We investigated cell viability and apoptosis signals, as well as levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA). The mRNA levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase-3 were also quantified through real-time quantitative PCR (RT-qPCR); protein levels of serine/threonine protein kinase (Akt) and forkhead box O3A (Foxo3a) were determined by western blot. Increasing of MnSO4 doses led to decreased SOD, GSH-Px, and CAT activities, while the level of MDA was upregulated. Moreover, cell apoptosis was significantly increased, as the mRNA of Bcl-2 and Caspase-3 was significantly decreased, while Bax mRNA was increased. Phosphorylated Akt (p-Akt) and Foxo3a (p-Foxo3a) were upregulated in a dose-dependent manner. In addition, LY294002 pretreatment reduced the activity of SOD, GSH-Px, and CAT but elevated MDA levels. Meanwhile, LY294002 pretreatment also increased cell apoptosis given the upregulated Bax and Caspase-3 mRNAs and decreased Bcl-2 mRNA. In summary, the PI3K/Akt signaling pathway can be activated by MnSO4 exposure and mediate MnSO4-induced neurotoxicity.
Collapse
Affiliation(s)
- Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hong Cheng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng Su
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi, China.
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China.
| |
Collapse
|
9
|
Owumi SE, Oladimeji BN, Elebiyo TC, Arunsi UO. Combine effect of exposure to petrol, kerosene and diesel fumes: On hepatic oxidative stress and haematological function in rats. Toxicol Ind Health 2021; 37:336-352. [PMID: 33949275 DOI: 10.1177/07482337211012498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol-gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte-basophil-eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine - positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations' health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological-immunologic function - thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bidemi N Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
11
|
Lovreglio P, Stufano A, Andreoli R, Tomasi C, Cagnazzi P, Barbieri A, Soleo L, De Palma G. Urinary biomarkers of nucleic acid oxidation and methylation in workers exposed to low concentrations of benzene. Toxicol Lett 2020; 331:235-241. [PMID: 32562636 DOI: 10.1016/j.toxlet.2020.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
The study aims to investigate the influence of exposure to low concentrations of benzene on urinary biomarkers of nucleic acid oxidative damage and methylation. Benzene exposure was characterized for 93 coke production workers by measuring both airborne benzene and S-phenylmercapturic acid (SPMA) and unmodified benzene (U-B) in urine samples, collected at the end of the shift (ES) and at the next morning before shift (next BS). In the same urinary samples, biomarkers of nucleic acid oxidative damage and methylation were determined. Urinary concentrations of cotinine and creatinine were also determined to evaluate the smoking effect and to normalize urinary concentrations of analytes, respectively. The biomarkers of benzene internal dose, of oxidative damage (8-hydroxyy-7,8-dihydroguanine, 8-hydroxy-7,8-dihydroguanosine and 8-hydroxy-7,8-2'deoxyguanosine) and some of the biomarkers of nucleic acid methylation (5-Methyl-Cytosine, 1-Methyl-Guanine and 7-Methyl-Guanine) were higher in the ES than the next BS samples. Positive associations between ES 5-Methyl-Cytosine and both SPMA and U-B were found. In conclusion, occupational exposure to low levels of benzene seems to be related to urinary ES 5-Methyl-Cytosine that could be a possible biomarker to evaluate the changes of the nucleic acid methylation status.
Collapse
Affiliation(s)
- Piero Lovreglio
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Angela Stufano
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Roberta Andreoli
- Department of Medicine and Surgery, Laboratory of Industrial Toxicology, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Cesare Tomasi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Brescia, Italy
| | - Paola Cagnazzi
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Anna Barbieri
- Department of Medical and Surgical Science, Section of Public Health and Human Sciences, University of Bologna, Bologna, Italy
| | - Leonardo Soleo
- Interdisciplinary Department of Medicine, Section of Occupational Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Section of Public Health and Human Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
12
|
Alyahya AAI, Asad M. Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112890. [PMID: 32330512 DOI: 10.1016/j.jep.2020.112890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense (Boswellia sacra Fluck.,) is a widely used herbal drug and household medicine for treatment of several diseases. Earlier toxicological studies revealed its proulcerogenic effect and no significant hepatotoxic or nephrotoxic effects in rats. However, some other members of Boswellia species such as Boswellia papyrifera (Caill. ex Delile) Hochst and Boswellia carterii have been reported for testicular toxicity in rats. AIM OF THE STUDY Testicular toxicity of standardized methanolic extract of B. sacra oleo gum resin was determined through repeated oral dose administration for 28 days. Biochemical, histological and genetic changes in rat testes were evaluated. MATERIALS AND METHODS B. sacra extract was analyzed for its boswellic acid content by high performance liquid chromatography (HPLC) method. The extract was administered at three different doses to rats. Effect on behavior, weight, food and water consumption along with changes in serum testosterone levels and cytoarchitecture of testis, epididymis and adrenal gland were determined. Gene expression of GSTPi, IGFBP3 and HSP70 in testis was also studied. RESULTS Boswellic acids (α and β) were present in highest concentration whereas acetyl-11-keto beta boswellic acid was present in relatively smaller amounts. The extract did not produce any significant change in the behavior of the animals, food/water consumption or weight gain. Serum testosterone levels were significantly decreased only by highest tested dose of Boswellia extract (1000 mg/kg, p.o). Histological examination did not reveal any variation in the structure of testis, adrenal gland and epididymis after administration of the extract while the expression of all three studied genes was significantly decreased. CONCLUSION The results indicate that B. sacra extract does not possess any toxic effect on testis. On the contrary, decrease in gene expression of GSTPi, IGFBP3 and HSP70 revealed its antioxidant potential that may protect testes against effect of toxicants. However, a significant reduction in serum testosterone levels point to mechanisms other than direct testicular toxicity.
Collapse
Affiliation(s)
| | - Mohammed Asad
- College of Applied Medical Sciences, Shaqra University, Saudi Arabia.
| |
Collapse
|
13
|
Jiménez-Garza O, Linares-Segovia B, Ruiz-García L, Monroy-Torres R, Hernández-Luna MA. 5'UTR methylation in different genes from workers exposed to volatile organic compounds: A new insight for considering an epigenetic mark as a functional correlate. Toxicol Lett 2020; 330:59-64. [PMID: 32437847 DOI: 10.1016/j.toxlet.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 11/17/2022]
Abstract
Gene-specific methylation has been related with transcriptional/translational consequences in different cells; also, this epigenetic modification is affected by environmental exposures. In previous studies, CYP2E1 activity in toluene-exposed workers was decreased compared to controls, however, CYP2E1 promoter methylation levels did not show significant differences. Here, we compared gene-specific methylation levels at the 5'UTR region, in a subset of workers whom already participated in two former studies, compared to controls. METHODS DNA was obtained from whole blood in five different groups: occupationally exposed to a mixture of volatile organic compounds (VOC): high levels (n = 19); low levels (n = 19) and very low levels (n = 17), toluene-exposed workers (n = 19) and control group (n = 19). We performed PCR-pyrosequencing at the 5'UTR region from four genes: CYP2E1, IL-6, SOD1 and TNF-α. RESULTS In participants exposed to high levels of a VOC mixture, we found significant differences: lower methylation levels for IL-6, and higher methylation levels for TNF-α compared to controls. In toluene-exposed workers, we found significant, lower methylation levels for CYP2E1 compared to controls. CONCLUSION Lower methylation levels at the 5'UTR region from CYP2E1 in toluene exposed-workers, suggests that this epigenetic modification could represent a functional correlate regarding enzymatic activity, as a response to toluene biotransformation.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Division, University of Guanajuato, León Campus. Blvd. Puente del Milenio, 1001 Fracc. Del Predio San Carlos, CP 37670, León, Guanajuato, Mexico.
| | - Benigno Linares-Segovia
- Health Sciences Division, University of Guanajuato, León Campus. Blvd. Puente del Milenio, 1001 Fracc. Del Predio San Carlos, CP 37670, León, Guanajuato, Mexico
| | - Liliana Ruiz-García
- Health Sciences Division, University of Guanajuato, León Campus. Blvd. Puente del Milenio, 1001 Fracc. Del Predio San Carlos, CP 37670, León, Guanajuato, Mexico
| | - Rebeca Monroy-Torres
- Health Sciences Division, University of Guanajuato, León Campus. Blvd. Puente del Milenio, 1001 Fracc. Del Predio San Carlos, CP 37670, León, Guanajuato, Mexico
| | - Marco Antonio Hernández-Luna
- Health Sciences Division, University of Guanajuato, León Campus. Blvd. Puente del Milenio, 1001 Fracc. Del Predio San Carlos, CP 37670, León, Guanajuato, Mexico
| |
Collapse
|
14
|
Barkhordari S, Mirmosayyeb O, Mansourian M, Hosseininasab F, Ramezani S, Barzegar M, Amin MM, Poursafa P, Esmaeil N, Kelishadi R. Omega 3 Supplementation Can Regulate Inflammatory States in Gas Station Workers: A Double-Blind Placebo-Controlled Clinical Trial. J Interferon Cytokine Res 2020; 40:262-267. [PMID: 32176565 DOI: 10.1089/jir.2019.0220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Environmental exposure to diesel particulate matter and commercial gasoline in gas station workers might induce oxidative stress and changes in the balance of the immune system. In this study, the immunomodulatory impacts of omega 3 fatty acid (ω3FA) supplement were assessed on inflammatory and anti-inflammatory markers in gas station workers in a double-blind placebo-controlled clinical trial. Fifty-three men working in gas stations were treated with ω3FA (n = 29) or placebo (n = 24) for 60 days. C-reactive protein, interleukin-12 (IL-12), transforming growth factor β (TGF-β), interferon γ (IFN-γ), tumor necrosis factor α, IL-10, and IL-17 levels were measured by enzyme-linked immunosorbent assay method before and after the completion of the trial. The concentrations of IFN-γ and IL-17 were significantly decreased in ω3FA group compared with the placebo group (P < 0.001). Moreover, the levels of inhibitory cytokines including TGF-β and IL-10 significantly were increased in ω3FA group (P < 0.001). Overall, ω3FA nutritional supplementation can be useful in reducing inflammatory immune responses and maintaining immune tolerance in people with high exposure to inflammation-inducing factors. [Figure: see text].
Collapse
Affiliation(s)
- Shoresh Barkhordari
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Universal Council of Epidemiology (UCE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marjan Mansourian
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Hosseininasab
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Ramezani
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Hu H, Chen L, Dai S, Li J, Bai X. Effect of Glutamine on Antioxidant Capacity and Lipid Peroxidation in the Breast Muscle of Heat-stressed Broilers via Antioxidant Genes and HSP70 Pathway. Animals (Basel) 2020; 10:ani10030404. [PMID: 32121383 PMCID: PMC7143643 DOI: 10.3390/ani10030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Glutamine (Gln) could be used as an additive to improve antioxidant capacity in the breast muscle of heat-stressed broilers. Two hundred and forty 22-day-old Arbor Acres broilers in the G1, G2, G3, and G4 groups (n = 60 each) were housed in a cyclic hot environment and fed the basal diet with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) pH and b* values, but decreased (p < 0.05) L* cooking loss, drip loss, and water loss rate in breast meat of heat-stressed broilers. Malondialdehyde levels in the breast muscle were lower (p < 0.05) in 1.0% and 1.5% Gln groups than that of the heat-stress group. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) catalase (CAT), glutathione, glutathione peroxidase (GSH-Px,) and total antioxidant capacity in the breast muscle of heat-stressed broilers. Furthermore, the CAT, GSH-Px, HSP70 mRNA expression levels, and HSP70 protein expression levels were increased (p < 0.05) in the G3 and G4 groups compared with the G1 group. In sum, Gln alleviated antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers through antioxidant genes and HSP70 pathways.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing 100193, China;
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, China;
| | - Jiaqi Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
- Correspondence: ; Tel.: +86-0550-6732-040
| |
Collapse
|
16
|
Ahmadi Z, Moradabadi A, Abdollahdokht D, Mehrabani M, Nematollahi MH. Association of environmental exposure with hematological and oxidative stress alteration in gasoline station attendants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20411-20417. [PMID: 31102212 DOI: 10.1007/s11356-019-05412-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Gasoline station attendants spend a great deal of their time in the direct exposure to noxious substances such as benzene and byproducts of gasoline combustion. Such occupational exposure increases the risk of oxidative stress. This study aimed to evaluate hematological and biochemical alterations among petrol station workers. Forty gas station attendants and 39 non-attendants were recruited as exposed and control subjects, respectively. Plasma samples were evaluated for hemoglobin, hematocrit, and red blood cell count via the Sysmex KX-21 analyzer. Then, oxidized hemoglobin, methemoglobin, and hemichrome were measured spectrophotometrically. Moreover, serum antioxidant capacity and protein oxidation were evaluated. The means ± SD of hemoglobin (16.76 ± 0.14 g/dl vs 15.25 ± 0.14 g/dl), hematocrit (49.11 ± 0.36% vs 45.37 ± 0.31%), RBC count (5.85 ± 0.06 mil/μl vs 5.33 ± 0.06 mil/μl), Met-HB (1.07 ± 0.07 g/dl vs 0.39 ± 0.04 g/dl), and hemichrome (0.80 ± 0.07 g/dl vs 0.37 ± 0.02 g/dl) in the exposed group were significantly greater than the control group (P < 0.001). The results of the independent-sample t test illustrated that the FRAP test value in the exposed group (0.23 ± 0.01 mM) was significantly lower than the control group (0.34 ± 0.01 mM), while the value of the plasma protein carbonyl test in the exposed group (7.47 ± 0.33 mmol/mg protein) was meaningfully greater than the control group (5.81 ± 0.19 mmol/mg protein) (P < 0.001). In conclusion, gas station attendants suffer from higher levels of oxidative stress, and they need to take antioxidants in order to minimize the effects of oxidative stress.
Collapse
Affiliation(s)
- Zahed Ahmadi
- Department of Occupational Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Moradabadi
- Hematology and blood banking, arak University of Medical Sciences, Arak, Iran
| | - Danial Abdollahdokht
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Kostrycki IM, Wildner G, Donato YH, dos Santos AB, Beber LCC, Frizzo MN, Ludwig MS, Keane KN, Cruzat V, Rhoden CR, Heck TG. Effects of High-Fat Diet on eHSP72 and Extra-to-Intracellular HSP70 Levels in Mice Submitted to Exercise under Exposure to Fine Particulate Matter. J Diabetes Res 2019; 2019:4858740. [PMID: 30723746 PMCID: PMC6339705 DOI: 10.1155/2019/4858740] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
Obesity, air pollution, and exercise induce alterations in the heat shock response (HSR), in both intracellular 70 kDa heat shock proteins (iHSP70) and the plasmatic extracellular form (eHSP72). Extra-to-intracellular HSP70 ratio (H-index = eHSP70/iHSP70 ratio) represents a candidate biomarker of subclinical health status. This study investigated the effects of moderate- and high-intensity exercise in the HSR and oxidative stress parameters, in obese mice exposed to fine particulate matter (PM2.5). Thirty-day-old male isogenic B6129F2/J mice were maintained for 16 weeks on standard chow or high-fat diet (HFD). Then, mice were exposed to either saline or 50 μg of PM2.5 by intranasal instillation and subsequently maintained at rest or subjected to moderate- or high-intensity swimming exercise. HFD mice exhibited high adiposity and glucose intolerance at week 16th. HFD mice submitted to moderate- or high-intensity exercise were not able to complete the exercise session and showed lower levels of eHSP70 and H-index, when compared to controls. PM2.5 exposure modified the glycaemic response to exercise and modified hematological responses in HFD mice. Our study suggests that obesity is a critical health condition for exercise prescription under PM2.5 exposure.
Collapse
Affiliation(s)
- Iberê Machado Kostrycki
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Laboratory of Oxidative Stress and Air Pollution, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme Wildner
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
| | - Yohanna Hannah Donato
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
| | - Analú Bender dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lílian Corrêa Costa Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Kevin Noel Keane
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria 3065, Australia
| | - Cláudia Ramos Rhoden
- Laboratory of Oxidative Stress and Air Pollution, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Ijuí, RS, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
18
|
Cheng H, Xia B, Su C, Chen K, Chen X, Chen P, Zou Y, Yang X. PI3K/Akt signaling pathway and Hsp70 activate in hippocampus of rats with chronic manganese sulfate exposure. J Trace Elem Med Biol 2018; 50:332-338. [PMID: 30262300 DOI: 10.1016/j.jtemb.2018.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) has come to the forefront of environmental concerns due to its neurotoxicity. However, the toxic effect of Mn is not fully understood. The purpose of this study is to investigate the impacts of chronic manganese sulfate (MnSO4) exposure in regulating the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway in rats. In this study, rats were treated with 0, 5.0, 10.0, and 20.0 mg/kg MnSO4•H2O five days a week for 24 weeks via intraperitoneal injection. At the end of the exposure period, the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA), and heat shock protein (Hsp70) in rats' plasma were quantified; the mRNA expression levels of caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), serine-threonine protein kinase (Akt-1), and forkhead box O3a (FoxO3a) were measured through real-time quantitative PCR (RT-PCR); and the levels of protein Hsp70 and Akt were assessed by western blot. With an increasing dose of MnSO4, the organ coefficients of all tested organs were significantly increased, except the testis. Compared with the control group, the activities of plasma SOD, GSH-Px, and CAT in MnSO4-exposed groups were significantly decreased, while the concentrations of plasma MDA and Hsp70 were significantly increased. Moreover, the hippocampal mRNA levels of Bcl-2, caspase-3, Akt-1, and FoxO3a in MnSO4-exposed groups were downregulated, but the level of Bax was upregulated. Meanwhile, the level of phosphorylation of Akt (p-Akt) and Hsp70 proteins tends to be upregulated by increasing MnSO4 exposure (P < 0.05). The plasma Hsp70 level was negatively associated with SOD, CAT, and GSH-Px activities (P < 0.05), and positively associated with blood MDA concentration and hippocampal Hsp70 levels (P < 0.05). Chronic MnSO4 exposure can result in apoptosis of central nerve cells, activate the PI3K/Akt signaling pathway in rats' hippocampus, and upregulate Hsp70 transcription and translation.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Xia
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Su
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Kangcheng Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
19
|
Baldissera FG, Dos Santos AB, Sulzbacher MM, Goettems-Fiorin PB, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: a relation with oxidative stress markers. Cell Stress Chaperones 2018; 23:1185-1192. [PMID: 29934712 PMCID: PMC6237679 DOI: 10.1007/s12192-018-0924-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to evaluate whether exposure to particles induces an imbalance in 70-kDa heat shock proteins (HSP70). Since intracellularly (iHSP70) it has anti-inflammatory roles whereas extracellularly (eHSP70) it has pro-inflammatory roles, we evaluate the effect of residual oil fly ash (ROFA) exposure on eHSP70-to-iHSP70 ratio (H index), a biomarker of inflammatory status that is related to oxidative stress in plasma and lymphoid tissue. Wistar rats that received ROFA suspension for three consecutive days (750 μg) showed an increase in plasma eHSP70 levels (mainly the 72-kDa inducible form). Also, ROFA promoted alterations on plasma oxidative stress (increased protein carbonyl groups and superoxide dismutase activity, and decrease sulfhydryl groups). There was an increase in H index of the plasma/thymus with no changes in circulating leukocyte level, iHSP70, or oxidative stress markers in lymphoid tissues. Our results support the hypothesis that eHSP70 content and H index represent inflammatory and oxidative biomarkers.
Collapse
Affiliation(s)
- Fernanda Giesel Baldissera
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Analú Bender Dos Santos
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Maicon Machado Sulzbacher
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Claudia Ramos Rhoden
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil.
| |
Collapse
|
20
|
Kamemura N. Methylcyclopentadienyl manganese tricarbonyl increases cell vulnerability to oxidative stress on rat thymocytes. Drug Chem Toxicol 2018; 42:140-146. [PMID: 29359594 DOI: 10.1080/01480545.2018.1424180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as a gasoline antiknock additive. However, the toxic effect of MMT is currently not well understood. In this study, we investigated the toxic effect of MMT on rat thymocytes using a flow cytometer and fluorescent probes. MMT at 100-300 µM significantly increased the population of cells exhibiting propidium fluorescence, i.e., the population of dead cells. The intensity of BES-So-AM fluorescence significantly increased when using 100 µM MMT. In addition, the intensity of oxonol fluorescence in rat thymocytes increased with the treatment with MMT in a concentration-dependent manner (10-100 µM). The toxic effect of MMT was inhibited by quercetin, antioxidant flavonoid. Moreover, co-treatment with 30-100 µM MMT and 100 µM H2O2 increased the cell lethality further. These results indicate that MMT increases cell vulnerability to oxidative stress on rat thymocytes. This study provides insight into the toxic effect of MMT on the immune system.
Collapse
Affiliation(s)
- Norio Kamemura
- a Division of Bioscience and Bioindustry , Tokushima University , Tokushima , Japan
| |
Collapse
|
21
|
Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9067875. [PMID: 29387296 PMCID: PMC5745714 DOI: 10.1155/2017/9067875] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Fine particulate matter (PM2.5) promotes heart oxidative stress (OS) and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70). Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70), which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index), a biomarker of inflammatory status. Male mice (n = 32), 30 days old, were divided into six groups for 12 weeks: control (CON), moderate (MIT) and high intensity training (HIT), exposure to 5 μg of PM2.5 daily (PM2.5), and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups). The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index). High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.
Collapse
|
22
|
Jiménez-Garza O, Guo L, Byun HM, Carrieri M, Bartolucci GB, Barrón-Vivanco BS, Baccarelli AA. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol Appl Pharmacol 2017; 339:65-72. [PMID: 29217486 DOI: 10.1016/j.taap.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Occupational exposure to volatile organic compounds (VOCs) may cause hematopoietic malignancy, either by single exposure to benzene or possibly due to a concomitant exposure to several VOCs. Since oxidative stress, inflammation and DNA repair pathways are closely involved in cancer development, the effect of VOC exposure on expression of proteins involved in these pathways has been studied, but epigenetic changes have not been well described. Here, DNA methylation status following occupational exposure to a VOC mixture was assessed by bisulfite sequencing of the promoter regions of seven genes involved in the mentioned pathways. Peripheral blood samples and individual-level VOC exposure data were obtained from healthy leather shoe factory workers (LS, n=40) and gas station attendants (GS, n=36), as well as a reference group of university employees (C, n=66). Exposure levels for acetone, ethylbenzene, methyl ethyl ketone, n-hexane, toluene and xylene were higher in LS (p<0.001); benzene and methyl acetate levels were higher in GS (p<0.001). TOP2A, SOD1, and TNF-α promoter methylation status was increased in LS (p<0.05). In LS, we also found significant correlations between GSTP1 promoter methylation and both iNOS (r=0.37, p=0.008) and COX-2 (r=-0.38, p=0.007) methylation. In exposed groups, ethylbenzene exposure levels showed a significant correlation with TOP2A methylation (β=0.33). Our results show early, toxic effects at the epigenetic level caused by occupational exposure to high levels of a VOC mixture. These subcellular modifications may represent the initial mechanism of toxicity leading to hematopoietic malignancy, possibly due to a synergistic, hematotoxic effect of VOC mixtures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Division, University of Guanajuato, León, Campus. Blvd. Puente del Mienio 1001, Fracción del Predio San Carlos, C.P. 37670 León Guanajuato, Mexico.
| | - Liqiong Guo
- Department of Occupational & Environmental Health, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Mariella Carrieri
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Giovanni Battista Bartolucci
- Department of Cardiologic, Thoracic and Vascular Science, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Briscia Socorro Barrón-Vivanco
- The Laboratory of Environmental Toxicology and Pollution, Autonomous University of Nayarit, Av de la Cultura Amado Nervo S/N, CP 36000 Tepic, Nayarit, Mexico
| | - Andrea A Baccarelli
- The Laboratory of Human Environmental Epigenetics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
23
|
Jiménez-Garza O, Guo L, Byun HM, Carrieri M, Bartolucci GB, Zhong J, Baccarelli AA. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis. Food Chem Toxicol 2017; 109:669-676. [DOI: 10.1016/j.fct.2017.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
|
24
|
Costa C, Miozzi E, Teodoro M, Briguglio G, Rapisarda V, Fenga C. New insights on 'old' toxicants in occupational toxicology (Review). Mol Med Rep 2017; 15:3317-3322. [PMID: 28339055 DOI: 10.3892/mmr.2017.6374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
In order to deliver the best possible working environment, it is essential to identify professional conditions that could be harmful for worker's health and prevent (or limit) the occurrence of such conditions. The appropriate use of personal protective equipment and the development of appropriate regulations allowed to reduce the prevalence of 'classic' occupational diseases, such as occupational hearing loss or asbestosis, just to name a few. Nowadays, environmental pollution seems to be one of the most relevant concerns for human and animal health, and toxicology is becoming one of the most prominent fields of interest in occupational settings. An increasing number of studies demonstrate that the presence of toxicants in the workplace could be responsible for the development of chronic diseases, even at doses that were considered 'safe'. The present review summarizes some of the most recent advancements in occupational toxicology, focusing on topics that have long been debated in the past and that have recently returned to the fore.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Edoardo Miozzi
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Michele Teodoro
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Giusi Briguglio
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| | - Venerando Rapisarda
- Section of Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I‑95124 Catania, Italy
| | - Concettina Fenga
- Section of Occupational Medicine, Department of Biomedical, Odontoiatric, Morphological and Functional Images, University of Messina, Policlinico 'G. Martino', I‑98125 Messina, Italy
| |
Collapse
|