1
|
Wang J, Dong J, Xu Q, Yan S, Wang H, Lei H, Ma X, Yang T, Wang K, Li Z, Wang X. Melatonin ameliorates RF-EMR-induced reproductive damage by inhibiting ferroptosis through Nrf2 pathway activation. Pathol Res Pract 2025; 270:156003. [PMID: 40344840 DOI: 10.1016/j.prp.2025.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
In recent years, there has been increased attention to the deleterious impacts of radiofrequency electromagnetic radiation (RF-EMR) on male reproductive ability, necessitating the exploration of effective protective measures. Melatonin has antioxidant and anti-apoptotic effects, and there is growing evidence of its benefit to the reproductive process. However, the biochemical mechanisms by which melatonin protects against reproductive damage from RF-EMR exposure are unknown. Here, we found that prolonged (8 weeks) exposure to RF-EMR [2.45 GHz; power density, 2.5 W/m2; whole-body specific absorption rate (SAR), 0.125-0.5 W/kg] induced ferroptosis and oxidative stress in testicular tissue, leading to a decrease of sperm quality in male mice. Notably, the administration of melatonin mitigated the oxidative harm to the testicles and ferroptosis caused by RF-EMR in mice. Mechanistically, melatonin could inhibit ROS production and ferroptosis by stimulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway through its receptors (MT1/MT2). Taken together, these results indicate that melatonin could potentially improve RF-EMR-induced reproductive damage in male mice by blocking ferroptosis through activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China; Department of Reproductive Medicine, General Hospital of Chinese PLA Central Theater Command, Wuhan, Hubei Province, China
| | - Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Haihui Wang
- Basic Medicine School, Air Force Medical University, No.5 Cadet Regiment, Xi'an, Shaanxi, China
| | - Hui Lei
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Xuhui Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Tao Yang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Ke Wang
- Department of Reproductive Medicine, Xi'an Gaoxin Hospital, Xi'an, Shaanxi Province, China.
| | - Zhen Li
- Department of Histology and Embryology, Air Force Medical University, Xi'an, Shaanxi Province, China.
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Amiri M, Khazaie H, Mohammadi M. The protective effects of melatonin against electromagnetic waves of cell phones in animal models: A systematic review. Animal Model Exp Med 2025; 8:629-637. [PMID: 39995082 PMCID: PMC12008444 DOI: 10.1002/ame2.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/21/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Due to the widespread use of cell phone devices today, numerous research studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems. In most studies, oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves. This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromagnetic waves on various organs. METHODS This study is a systematic review of articles chosen by searching Google Scholar, PubMed, Embase, Scopus, Web of Science, and Science Direct using the keywords 'melatonin', 'cell phone radiation', and 'animal model'. The search focused on articles written in English, which were reviewed and evaluated. The PRISMA process was used to review the articles chosen for the study, and the JBI checklist was used to check the quality of the reviewed articles. RESULTS In the final review of 11 valid quality-checked articles, the effects of melatonin in the intervention group, the effects of electromagnetic waves in the case group, and the amount of melatonin in the chosen organ, i.e. brain, skin, eyes, testis and the kidney were thoroughly examined. The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain, the skin, the eyes, the testis, and the kidneys. Melatonin can considerably augment the anti-oxidative system of cells and protect tissues; these measurements were significantly increased in control groups. Electromagnetic waves can induce tissue atrophy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin. CONCLUSION Our review confirms that melatonin effectively protects the organs of animal models against electromagnetic waves. In light of this conclusion and the current world-wide use of melatonin, future studies should advance to the stages of human clinical trials. We also recommend that more research in the field of melatonin physiology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications resulting from electromagnetic waves in humans.
Collapse
Affiliation(s)
- Mohammad Amiri
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Habibolah Khazaie
- Sleep Disorders Research CenterKermanshah University of Medical SciencesKermanshahIran
| | - Masoud Mohammadi
- Research Center for Social Determinants of HealthJahrom University of Medical SciencesJahromIran
| |
Collapse
|
3
|
Jamaludin N, Ibrahim SF, Jaffar FHF, Zulkefli AF, Osman K. The Influence of 2.45 GHz Wi-Fi Exposure Duration on Sperm Quality and Testicular Histopathology: An Exploration of Peroxidative Injury. Antioxidants (Basel) 2025; 14:179. [PMID: 40002366 PMCID: PMC11852241 DOI: 10.3390/antiox14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Concerns have arisen about the impact of wireless technology on male fertility, particularly regarding the duration of 2.45 GHz Wi-Fi radiation exposure. This study examines the influence of various exposure durations on sperm parameters and testicular histopathology, focusing on malondialdehyde as an oxidative stress marker. Twenty-four Sprague Dawley rats were exposed for eight weeks, after which their sperm concentration, motility, and viability and testicular histopathology were assessed. Malondialdehyde levels were measured using an Enzyme-Linked Immunosorbent Assay. One-way ANOVAs with Tukey's post hoc tests were conducted for the sperm concentration, motility, and viability; the seminiferous epithelium height; and malondialdehyde. The Kruskal-Wallis H test was used for the Johnsen Score and seminiferous tubule diameter. The results indicated that 4 h of exposure to 2.45 GHz radiation induced oxidative stress and adversely affected sperm parameters and the testicular ultrastructure. Gradual recovery was observed at 8 h, with further improvement at 24 h, suggesting the activation of cell repair mechanisms. This was supported by significant changes in testicular organ coefficients, indicating potential recovery. Our findings suggest that Wi-Fi exposure reduces sperm fertility potential, with the body showing limited capacity for complete recovery from the damage.
Collapse
Affiliation(s)
- Norazurashima Jamaludin
- Centre of Diagnostic, Therapeutic and Investigation Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Department of Anatomy & Physiology, Institut Latihan Kementerian Kesihatan Malaysia (ILKKM), Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Farah Hanan Fathihah Jaffar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.F.I.); (F.H.F.J.); (A.F.Z.)
| | - Khairul Osman
- Centre of Diagnostic, Therapeutic and Investigation Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
4
|
Dehdari Ebrahimi N, Sadeghi A, Falamarzi K, Shahlaee MA, Azarpira N. Radio-protective effects of melatonin therapy against testicular oxidative stress: a systematic review and meta-analysis of rodent models. Ann Med Surg (Lond) 2024; 86:7062-7071. [PMID: 39649857 PMCID: PMC11623811 DOI: 10.1097/ms9.0000000000002620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 12/11/2024] Open
Abstract
Background Radiation exposure is a concern in today's world, given the widespread use of electronic devices and medical procedures involving ionizing and non-ionizing radiation. Radiations may cause male infertility by inducing oxidative stress in testicular tissue. Melatonin has antioxidant properties. Methods The authors systematically reviewed the literature for the studies that have investigated the effects of melatonin therapy on radiation-induced oxidative stress in rodents' testicular tissue. PubMed, Scopus, and Web of Science were searched for relevant animal trials. Standardized mean difference and 95% CIs were used to pool the data. Subgroup and sensitivity analyses were done. The risk of bias was assessed using SYRCLE tool. Results Outcomes: histopathology and sperm analyses (testicular apoptotic cells, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular diameter, sperm motility, viability, count, and morphology, concentration of spermatid, spermatocyte, and spermatogonia), body and testes weights (absolute and relative body and testicular weights), reproductive hormones (serum prolactin, FSH, and testosterone), and oxidative stress tissue markers (TBARS, CAT, GSH, GSH-Px, MDA, SOD, and XO, and total antioxidant capacity). Rats and mice were exposed to electromagnetic radiations (gamma, roentgen, microwave, radiofrequency, and high-power line energy) and particle waves (radioiodine and carbon-ion). Melatonin therapy was significantly associated with improved male reproduction. Conclusion Radiation exposure harms male fertility, but melatonin, as an antioxidant, is potentially associated with improved male reproductive function in rodents. Inconsistencies in research require further investigations.
Collapse
Affiliation(s)
| | - Alireza Sadeghi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Guo C, Wang Q, Shuai P, Wang T, Wu W, Li Y, Huang S, Yu J, Yi L. Radiation and male reproductive system: Damage and protection. CHEMOSPHERE 2024; 357:142030. [PMID: 38626814 DOI: 10.1016/j.chemosphere.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.
Collapse
Affiliation(s)
- Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Cordelli E, Ardoino L, Benassi B, Consales C, Eleuteri P, Marino C, Sciortino M, Villani P, H Brinkworth M, Chen G, P McNamee J, Wood AW, Belackova L, Verbeek J, Pacchierotti F. Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro. ENVIRONMENT INTERNATIONAL 2024; 185:108509. [PMID: 38492496 DOI: 10.1016/j.envint.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Reproductive health outcomes have been identified among the priority topics to be addressed. OBJECTIVES To evaluate the effect of RF-EMF exposure on male fertility of experimental mammals and on human sperm exposed in vitro. METHODS Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 17, 2022. Two independent reviewers screened the studies, which were considered eligible if met the following criteria: 1) Peer-reviewed publications of sham controlled experimental studies, 2) Non-human male mammals exposed at any stage of development or human sperm exposed in vitro, 3) RF-EMF exposure within the frequency range of 100 kHz-300 GHz, including electromagnetic pulses (EMP), 4) one of the following indicators of reproductive system impairment:Two reviewers extracted study characteristics and outcome data. We assessed risk of bias (RoB) using the Office of Health Assessment and Translation (OHAT) guidelines. We categorized studies into 3 levels of overall RoB: low, some or high concern. We pooled study results in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses. For experimental animal studies, we conducted subgroup analyses for species, Specific Absorption Rate (SAR) and temperature increase. We grouped studies on human sperm exposed in vitro by the fertility status of sample donors and SAR. We assessed the certainty of the evidence using the GRADE approach after excluding studies that were rated as "high concern" for RoB. RESULTS One-hundred and seventeen papers on animal studies and 10 papers on human sperm exposed in vitro were included in this review. Only few studies were rated as "low concern" because most studies were at RoB for exposure and/or outcome assessment. Subgrouping the experimental animal studies by species, SAR, and temperature increase partly accounted for the heterogeneity of individual studies in about one third of the meta-analyses. In no case was it possible to conduct a subgroup analysis of the few human sperm in vitro studies because there were always 1 or more groups including less than 3 studies. Among all the considered endpoints, the meta-analyses of animal studies provided evidence of adverse effects of RF-EMF exposure in all cases but the rate of infertile males and the size of the sired litters. The assessment of certainty according to the GRADE methodology assigned a moderate certainty to the reduction of pregnancy rate and to the evidence of no-effect on litter size, a low certainty to the reduction of sperm count, and a very low certainty to all the other meta-analysis results. Studies on human sperm exposed in vitro indicated a small detrimental effect of RF-EMF exposure on vitality and no-effect on DNA/chromatin alterations. According to GRADE, a very low certainty was attributed to these results. The few studies that used EMP exposure did not show effects on the outcomes. A low to very low certainty was attributed to these results. DISCUSSION Many of the studies examined suffered of severe limitations that led to the attribution of uncertainty to the results of the meta-analyses and did not allow to draw firm conclusions on most of the endpoints. Nevertheless, the associations between RF-EMF exposure and decrease of pregnancy rate and sperm count, to which moderate and low certainty were attributed, are not negligible, also in view of the indications that in Western countries human male fertility potential seems to be progressively declining. It was beyond the scope of our systematic review to determine the shape of the dose-response relationship or to identify a minimum effective exposure level. The subgroup and the dose-response fitting analyses did not show a consistent relationship between the exposure levels and the observed effects. Notably, most studies evaluated RF-EMF exposure levels that were higher than the levels to which human populations are typically exposed, and the limits set in international guidelines. For these reasons we cannot provide suggestions to confirm or reconsider current human exposure limits. Considering the outcomes of this systematic review and taking into account the limitations found in several of the studies, we suggest that further investigations with better characterization of exposure and dosimetry including several exposure levels and blinded outcome assessment were conducted. PROTOCOL REGISTRATION Protocols for the systematic reviews of animal studies and of human sperm in vitro studies were published in Pacchierotti et al., 2021. The former was also registered in PROSPERO (CRD42021227729 https://www.crd.york.ac.uk/prospero/display_record.php?RecordID = 227729) and the latter in Open Science Framework (OSF Registration DOI https://doi.org/10.17605/OSF.IO/7MUS3).
Collapse
Affiliation(s)
- Eugenia Cordelli
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Lucia Ardoino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Barbara Benassi
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Claudia Consales
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Carmela Marino
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Villani
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Martin H Brinkworth
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - James P McNamee
- Non-Ionizing Radiation Health Sciences Division, Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Andrew W Wood
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Australia
| | - Lea Belackova
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Jos Verbeek
- University Medical Centers Amsterdam, Coronel Institute of Occupational Health, Cochrane Work, Amsterdam, the Netherlands
| | - Francesca Pacchierotti
- Division Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
7
|
Demirbağ B, Aktaş S, Çömelekoğlu Ü, Kara İ, Yildirim M, Yildirim DD. Protective effect of paricalcitol in rat testicular damage induced by subchronic 1800 MHz radiofrequency radiation. Biochem Biophys Res Commun 2023; 680:42-50. [PMID: 37717340 DOI: 10.1016/j.bbrc.2023.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
In the present study, the possible protective effects of paricalcitol (P) were investigated in testicular damage because of 1800 MHz radiofrequency radiation (RFR) exposure. Male Sprague Dawley rats 8-10 weeks old (n = 28) were randomly divided into four groups as control (C) (n = 7), RFR (n = 7, 1800 MHz RFR 1 h/day for 30 days), P (n = 7, 0.2 μg/kg paricalcitol, 3 times a week for 30 days), and RFR + P (n = 7, 1800 MHz RFR 1 h/day for 30 days +0.2 μg/kg paricalcitol, 3 times a week for 30 days). Testicular tissue was evaluated with histological and biochemical methods. No statistically significant differences were detected between the groups in seminiferous tubule diameters and germinal epithelial thicknesses. While ultrastructural changes were observed in the seminiferous tubule and Leydig cells in the RFR group, these changes were decreased in the RFR + P group. It was found that the Johnsen Score, Ki67, and p63 immunoreactivity scores (IRS), superoxide dismutase (SOD), and catalase (CAT) activities in the RFR + P group were statistically increased as compared to the RFR group and the malondialdehyde (MDA) levels were decreased statistically and significantly. These results show that paricalcitol administration may have an ameliorative effect on testicular damage occurring because of 1800 MHz RFR exposure.
Collapse
Affiliation(s)
- Burcu Demirbağ
- Mersin University, Faculty of Medicine, Department of Stem Cell and Regenerative Medical, Mersin, Turkey
| | - Savaş Aktaş
- Mersin University, Faculty of Medicine, Department of Histology and Embryology, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Mersin University, Faculty of Medicine, Department of Biophysics, Mersin, Turkey
| | - İlker Kara
- Mersin University, Faculty of Medicine, Department of Histology and Embryology, Mersin, Turkey
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey.
| | | |
Collapse
|
8
|
Özgen M, Take G, Kaplanoğlu İ, Erdoğan D, Seymen CM. Therapeutic effects of melatonin in long-term exposure to 2100MHz radiofrequency radiation on rat sperm characteristics. Rev Int Androl 2023; 21:100371. [PMID: 37413938 DOI: 10.1016/j.androl.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/15/2022] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Radiofrequency electromagnetic fields (RF-EMFs) are one of the risk factors for male reproductive health and melatonin can be an ideal candidate for therapeutic development against RF-induced male fertility problems due to its antioxidant properties. The possible therapeutic role of melatonin in the destructive effects of 2100MHz RF radiation on rat sperm characteristics is investigated in the present study. METHODS Wistar albino rats were divided into four groups and the experiment continued for ninety consecutive days; Control, Melatonin (10mg/kg, subcutaneously), RF (2100MHz, thirty minutes per day, whole-body), and RF+Melatonin groups. Left caudal epididymis and ductus deferens tissues were placed in sperm wash solution (at 37°C) and dissected. The sperms were counted and stained. Measurements of the perinuclear ring of the manchette and posterior portion of the nucleus (ARC) were performed and the sperms were examined at an ultrastructural level. All of the parameters were evaluated statistically. RESULTS The percentages of abnormal sperm morphology were significantly increased with RF exposure, while the total sperm count was significantly decreased. RF exposure also showed harmful effects on acrosome, axoneme, mitochondrial sheath, and outer dense fibers at the ultrastructural level. The number of total sperms, sperms with normal morphology increased, and ultrastructural appearance returned to normal by melatonin administration. DISCUSSION The data showed that melatonin may be a beneficial therapeutic agent for long-term exposure of 2100MHz RF radiation-related reproductive impairments.
Collapse
Affiliation(s)
- Meltem Özgen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Gülnur Take
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - İskender Kaplanoğlu
- Sağlık Bilimleri University, Etlik Zübeyde Hanım Women's Health Teaching and Research Hospital, Center of Assisted Reproduction, Ankara, Turkey
| | - Deniz Erdoğan
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
| | - Cemile Merve Seymen
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
9
|
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q, Li L. Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 2023; 14:1234280. [PMID: 37529603 PMCID: PMC10390305 DOI: 10.3389/fendo.2023.1234280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
In the complex and dynamic processes of replication, transcription, and translation of DNA molecules, a large number of replication errors or damage can occur which lead to obstacles in the development process of germ cells and result in a decreased reproductive rate. DNA damage repair has attracted widespread attention due to its important role in the maintenance and regulation of germ cells. This study reports on a systematic review of the role and mechanism of DNA damage repair in germline development. First, the causes, detection methods, and repair methods of DNA damage, and the mechanism of DNA damage repair are summarized. Second, a summary of the causes of abnormal DNA damage repair in germ cells is introduced along with common examples, and the relevant effects of germ cell damage. Third, we introduce the application of drugs related to DNA damage repair in the treatment of reproductive diseases and related surgical treatment of abnormal DNA damage, and summarize various applications of DNA damage repair in germ cells. Finally, a summary and discussion is given of the current deficiencies in DNA damage repair during germ cell development and future research development. The purpose of this paper is to provide researchers engaged in relevant fields with a further systematic understanding of the relevant applications of DNA damage repair in germ cells and to gain inspiration from it to provide new research ideas for related fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Mengrong Su
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Qizhuang Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Li Li
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| |
Collapse
|
10
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
11
|
Amer ME, Othman AI, Abozaid HM, El-Missiry MA. Utility of melatonin in mitigating ionizing radiation-induced testis injury through synergistic interdependence of its biological properties. Biol Res 2022; 55:33. [PMID: 36333811 PMCID: PMC9636653 DOI: 10.1186/s40659-022-00401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ionizing radiations (IR) have widespread useful applications in our daily life; however, they have unfavorable effects on reproductive health. Maintaining testicular health following IR exposure is an important requirement for reproductive potential. The current study explored the role of melatonin (MLT) in mitigating IR-induced injury in young adult rat testis. Methods Rats were given daily MLT (25 mg/kg) for 3 and 14 days after receiving 4 Gy γ-radiation. Results Serum MLT levels and other antioxidants, including glutathione content, and the activity of glutathione peroxidase and glutathione reductase in the testis of the irradiated rats were remarkably maintained by MLT administration in irradiated rats. Hence, the hydrogen peroxide level declined with remarkably reduced formation of oxidative stress markers, 4-hydroxynonenal, and 8-Hydroxy-2′-deoxyguanosine in the testis of irradiated animals after MLT administration. The redox status improvement caused a remarkable regression of proapoptotic protein (p53, Cyto-c, and caspase-3) in the testis and improved inflammatory cytokines (CRP and IL-6), and anti-inflammatory cytokine (interleukin IL-10) in serum. This is associated with restoration of disturbed sex hormonal balance, androgen receptor upregulation, and testicular cell proliferation activity in irradiated rats, explaining the improvement of sperm parameters (count, motility, viability, and deformation). Consequently, spermatogenic cell depletion and decreased seminiferous tubule diameter and perimeter were attenuated by MLT treatment post irradiation. Moreover, the testis of irradiated-MLT-treated rats showed well-organized histological architecture and normal sperm morphology. Conclusions These results show that radiation-induced testicular injury is mitigated following IR exposure through synergistic interdependence between the antioxidant, anti-inflammatory, anti-apoptotic, and anti-DNA damage actions of MLT.
Collapse
|
12
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
14
|
Molecular Mechanism of Malignant Transformation of Balb/c-3T3 Cells Induced by Long-Term Exposure to 1800 MHz Radiofrequency Electromagnetic Radiation (RF-EMR). Bioengineering (Basel) 2022; 9:bioengineering9020043. [PMID: 35200397 PMCID: PMC8869874 DOI: 10.3390/bioengineering9020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose: We aimed to investigate RF-EMR-induced cell malignant transformation. Methods: We divided Balb/c-3T3 cells into sham and expo groups. The expo groups were exposed to a 1800 MHz RF continuous wave for 40 and 60 days, for 4 h per day. The sham group was sham-exposed. Cells were harvested for a cell transformation assay, transplantation in severe combined immune deficient (SCID) mice, soft agar clone formation detection, and a transwell assay. The mRNA microarray assay was used to declare key genes and pathways. Results: The exposed Balb/c-3T3 cells showed a strong increase in cell proliferation and migration. Malignant transformation was observed in expo Balb/c-3T3 cells exposed for 40 days and 60 days, which was symbolized with visible foci and clone formation. Expo Balb/c-3T3 cells that were exposed for 40 days and 60 days produced visible tumors in the SCID mice. Lipid metabolism was the key biological process and pathway involved. The mevalonate (MVA) pathway was the key metabolic pathway. The interacted miRNAs could be further research targets to examine the molecular mechanism of the carcinogenic effects of long-term exposure. Conclusion: Exposure for 40 and 60 days to 1800 MHz RF-EMR induced malignant transformation in Balb/c-3T3 cells at the SAR of 8.0 W/kg. We declared that lipid metabolism was the pivotal biological process and pathway. The MVA pathway was the key metabolic pathway.
Collapse
|
15
|
Zhou X, Du HH, Long X, Pan Y, Hu J, Yu J, Zhao X. β-Nicotinamide Mononucleotide (NMN) Administrated by Intraperitoneal Injection Mediates Protection Against UVB-Induced Skin Damage in Mice. J Inflamm Res 2021; 14:5165-5182. [PMID: 34675595 PMCID: PMC8504657 DOI: 10.2147/jir.s327329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Objective Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of anti-oxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage. Methods We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin- and liver-related genes. Results The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H2O2), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results. Conclusion Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, South Korea
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Jian Hu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Jianjun Yu
- R&D Department, Effepharm (Shanghai) Co., Ltd, Shanghai, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Mir SM, Aliarab A, Goodarzi G, Shirzad M, Jafari SM, Qujeq D, Samavarchi Tehrani S, Asadi J. Melatonin: A smart molecule in the DNA repair system. Cell Biochem Funct 2021; 40:4-16. [PMID: 34672014 DOI: 10.1002/cbf.3672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022]
Abstract
DNA repair is an important pathway for the protection of DNA molecules from destruction. DNA damage can be produced by oxidative reactive nitrogen or oxygen species, irritation, alkylating agents, depurination and depyrimidination; in this regard, DNA repair pathways can neutralize the negative effects of these factors. Melatonin is a hormone secreted from the pineal gland with an antioxidant effect by binding to oxidative factors. In addition, the effect of melatonin on DNA repair pathways has been proven by the literature. DNA repair is carried out by several mechanisms, of which homologous recombination repair (HRR) and non-homologous end-joining (NHEJ) are of great importance. Because of the importance of DNA repair in DNA integrity and the anticancer effect of this pathway, we presented the effect of melatonin on DNA repair factors regarding previous studies conducted in this area.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
The guardians of germ cells; Sertoli-derived exosomes against electromagnetic field-induced oxidative stress in mouse spermatogonial stem cells. Theriogenology 2021; 173:112-122. [PMID: 34371438 DOI: 10.1016/j.theriogenology.2021.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 01/10/2023]
Abstract
Nowadays, prolonged exposure to electromagnetic fields (EMF) has raised public concern about the detrimental potential of EMF on spermatogonial stem cells (SSCs) and spermatogenesis. Recent studies introduced the fundamental role of Sertoli cell paracrine signaling in the regulation of SSCs maintenance and differentiation in fertility preservation. Thus we investigated the therapeutic effect of Sertoli-derived exosomes (Sertoli-EXOs) as powerful paracrine mediators in SSCs subjected to EMF and its underlying mechanisms. SSCs and Sertoli cells were isolated from neonate mice testis, and identified by their specific markers. Then SSCs were exposed to 50 Hz EMF with intensity of 2.5 mT (1 h for 5 days) and supplemented with exosomes that were isolated from pre-pubertal Sertoli cells. Sertoli-EXOs were characterized and the uptake was observed by PKH26 labeling. The cell viability, colonization efficiency, reactive oxygen species (ROS) balance, cell cycle arrest and apoptosis induction were then analysed. SSCs were confirmed by immunocytochemistry (Oct4, Plzf) and Sertoli cells were identified through Sox9 and vimentin expression by immunocytochemistry and Real-time PCR (qRT-PCR), respectively. Our results demonstrated the detrimental effect of EMF via ROS accumulation that reduced the expression of catalase antioxidant, cell viability and colonization of SSCs. Also, AO/PI and flow cytometry analysis demonstrated the elevation of apoptosis in SSCs exposed to EMF in comparison with control. qRT-PCR data confirmed the up-regulation of apoptotic gene (Caspase-3) and down-regulation of SSCs specific gene (GFRα1). Consequently, the administration of Sertoli-EXOs exerted ameliorative effect on SSCs and significantly improved these changes through the regulation of oxidative stress. These findings suggest that Sertoli-EXOs have positive impact on SSCs exposed to EMF and can be useful in further investigation of Sertoli-EXOs as a novel therapeutic agent which may recover the deregulated SSCs microenvironment and spermatogenesis after exposure to EMF.
Collapse
|
18
|
Yu G, Bai Z, Song C, Cheng Q, Wang G, Tang Z, Yang S. Current progress on the effect of mobile phone radiation on sperm quality: An updated systematic review and meta-analysis of human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:116952. [PMID: 33862271 DOI: 10.1016/j.envpol.2021.116952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Potential suppression of fertility due to mobile phone radiation remains a focus of researchers. We conducted meta-analyses on the effects of mobile phone radiation on sperm quality using recent evidence and propose some perspectives on this issue. Using the MEDLINE/PubMed, Embase, WOS, CENTRAL, and ClinicalTrials.gov databases, we retrieved and screened studies published before December 2020 on the effects of mobile phone use/mobile phone RF-EMR on sperm quality. Thirty-nine studies were included. Data quality and general information of the studies were evaluated and recorded. Sperm quality data (density, motility, viability, morphology, and DFI) were compiled for further analyses, and we conducted subgroup, sensitivity, and publication bias analyses. The pooled results of human cross-sectional studies did not support an association of mobile phone use and a decline in sperm quality. Different study areas contributed to the heterogeneity of the studies. In East Europe and West Asia, mobile phone use was correlated with a decline in sperm density and motility. Mobile phone RF-EMR exposure could decrease the motility and viability of mature human sperm in vitro. The pooled results of animal studies showed that mobile phone RF-EMR exposure could suppress sperm motility and viability. Furthermore, it reduced sperm density in mice, in rats older than 10 weeks, and in rats restrained during exposure. Differences regarding age, modeling method, exposure device, and exposure time contributed to the heterogeneity of animal studies. Previous studies have extensively investigated and demonstrated the adverse effects of mobile phone radiation on sperm. In the future, new standardized criteria should be applied to evaluate potential effects of mobile phone RF-EMR dosages. Further sperm-related parameters at the functional and molecular levels as well as changes in biological characteristics of germ cells should be evaluated. Moreover, the impact of mobile phone RF-EMR on individual organs should also be examined.
Collapse
Affiliation(s)
- Gang Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China; Haikou Center for Medical Synchrotron Radiation Research, Haikou People's Hospital, Haikou, China
| | - Chao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Cheng
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Gang Wang
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zeping Tang
- Guangdong Environmental Radiation Monitoring Center, Guangzhou, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
20
|
Ivanov D, Mazzoccoli G, Anderson G, Linkova N, Dyatlova A, Mironova E, Polyakova V, Kvetnoy I, Evsyukova I, Carbone A, Nasyrov R. Melatonin, Its Beneficial Effects on Embryogenesis from Mitigating Oxidative Stress to Regulating Gene Expression. Int J Mol Sci 2021; 22:ijms22115885. [PMID: 34070944 PMCID: PMC8198864 DOI: 10.3390/ijms22115885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (G.M.); (A.C.)
| | - George Anderson
- Department of Clinical Research, CRC Scotland & London, London E14 6JE, UK;
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
- Department of Therapy, Geriatry and Anti-Aging Medicine, Academy of Postgraduate Education, Federal Medical Biological Agency, 220013 Moscow, Russia
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
| | - Ekaterina Mironova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 St. Petersburg, Russia; (N.L.); (A.D.)
- Center of Molecular Biomedicine, Saint-Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, 191036 St. Petersburg, Russia;
- Correspondence: ; Tel.: +7-(999)-535-95-88
| | - Victoria Polyakova
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| | - Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, 191036 St. Petersburg, Russia;
- Department of Pathology, Saint-Petersburg State University, University Embankment, 7/9, 199034 St. Petersburg, Russia
| | - Inna Evsyukova
- Department of Newborns’ Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleyevskaya Liniya, 3, 199034 St. Petersburg, Russia;
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (G.M.); (A.C.)
| | - Ruslan Nasyrov
- Department of Neonatology, Saint-Petersburg State Pediatric Medical University, Litovskaya Str., 2, 194100 St. Petersburg, Russia; (D.I.); (V.P.); (R.N.)
| |
Collapse
|
21
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
22
|
Tirpák F, Greifová H, Lukáč N, Stawarz R, Massányi P. Exogenous Factors Affecting the Functional Integrity of Male Reproduction. Life (Basel) 2021; 11:213. [PMID: 33803103 PMCID: PMC8001766 DOI: 10.3390/life11030213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022] Open
Abstract
Natural processes along with increased industrial production and the irresponsible behavior of mankind have resulted in environmental pollution. Environmental pollutants can be categorized based on their characteristics and appearance into the following groups: physical, biological, and chemical. Every single one of them represents a serious threat to the male reproductive tract despite the different modes of action. Male gonads and gametes are especially vulnerable to the effect of exogenous factors; therefore, they are considered a reliable indicator of environmental pollution. The impact of xenobiotics or radiation leads to an irreversible impairment of fertility displayed by histological changes, modulated androgen production, or compromised spermatozoa (or germ cells) quality. The present article reviews the exogenous threats, male reproductive system, the mode of action, and overall impact on the reproductive health of humans and animals.
Collapse
Affiliation(s)
- Filip Tirpák
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Norbert Lukáč
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| | - Peter Massányi
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.); (N.L.)
- Institute of Biology, Pedagogical University of Krakow, Podchorazych 2, 30-084 Krakow, Poland;
| |
Collapse
|
23
|
Gunes M, Ates K, Yalcin B, Akkurt S, Ozen S, Kaya B. An Evaluation of the Genotoxic Effects of Electromagnetic Radiation at 900 MHz, 1800 MHz, and 2100 MHz Frequencies with a SMART Assay in Drosophila melanogaster. Electromagn Biol Med 2021; 40:254-263. [PMID: 33622140 DOI: 10.1080/15368378.2021.1878210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the development of today's technology, the electromagnetic radiation spread by mobile phones and base stations is also rapidly increasing, and this causes serious concerns about the environment and human health. The Drosophila model organism is widely used in genetic toxicology studies because its genome is highly similar to the genes identified in human diseases. In this study, the genotoxic effects of radiofrequency electromagnetic radiation were evaluated by the wing Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster at 900 MHz, 1800 MHz, and 2100 MHz. The SMART method is based on the observation of genetic changes occurring in the trichomes of the Drosophila wings appearing as mutant clones under the microscope. Throughout the study, total clone parameters were evaluated by exposing the Drosophila larvae to electromagnetic fields for two, four, and six hours per day for two days. As a result of the study, it was observed that the number of mutant clones was statistically increased according to the negative control group in all applications except for the six-hour application at 1800 MHz.
Collapse
Affiliation(s)
- Merve Gunes
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Kayhan Ates
- Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Burcin Yalcin
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Sibel Akkurt
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Bulent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Mahmoud NM, Gomaa RS, Salem AE. Activation of liver X receptors ameliorates alterations in testicular function in rats exposed to electromagnetic radiation. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2021.1884333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Randa Salah Gomaa
- Medical Physiology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Elsayd Salem
- Pharmacology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Yadav H, Rai U, Singh R. Radiofrequency radiation: A possible threat to male fertility. Reprod Toxicol 2021; 100:90-100. [PMID: 33497741 DOI: 10.1016/j.reprotox.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Radiofrequency exposure from man-made sources has increased drastically with the era of advanced technology. People could not escape from such RF radiations as they have become the essential part of our routine life such as Wi-Fi, microwave ovens, TV, mobile phones, etc. Although non-ionizing radiations are less damaging than ionizing radiations but its long term exposure effect cannot be avoided. For fertility to be affected, either there is an alteration in germ cell, or its nourishing environment, and RF affects both the parameters subsequently, leading to infertility. This review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes. RF also results in genetic and hormonal changes. In addition, the contribution of oxidative stress and protein kinase complex after RFR exposure is also summarized which could also be the possible mechanism for reduction in sperm parameters. Further, some preventative measures are described which could help in reverting the radiofrequency effects on germ cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Umesh Rai
- Deparment of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
26
|
Negi P, Singh R. Association between reproductive health and nonionizing radiation exposure. Electromagn Biol Med 2021; 40:92-102. [PMID: 33471575 DOI: 10.1080/15368378.2021.1874973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Recently, a decreasing rate of fertility has to be credited to an array of factors such as environmental, health and lifestyle. Male infertility is likely to be affected by the strong exposure to heat and radiations. The most common sources of nonionizing radiations are cell phones, laptops, Wi-Fi and microwave ovens, which may participate to the cause of male infertility. One of the major sources of daily exposure to non-ionizing radiation is mobile phones. A mobile phone is now basically dominating our daily life through better services such as connectivity, smartphone devices. However, the health consequences are linked with their usage are frequently ignored. Constant exposure to non-ionizing radiations produced from a cell phone is one of the possible reasons for growing male infertility. Recently, several studies have shown that cell phone users have altered sperm parameters causing declining reproductive health. Cell phone radiation harms male fertility by affecting the different parameters like sperm motility, sperm count, sperm morphology, semen concentration, morphometric abnormalities, increased oxidative stress along with some hormonal changes. This review is focusing on the prevailing literature from in vitro and in vivo studies suggesting that non-ionizing exposure negatively affects human male infertility.
Collapse
Affiliation(s)
- Pooja Negi
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| |
Collapse
|
27
|
Ding Z, Xiang X, Li J, Wu S. Long-term 1800MHz electromagnetic radiation did not induce Balb/c-3T3 cells malignant transformation. Electromagn Biol Med 2021; 40:169-178. [PMID: 33211539 DOI: 10.1080/15368378.2020.1846194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
There is an increased public concern about potential health hazards of exposure to electromagnetic radiation (EMR). To declare the carcinogenic effects of 1800 MHz EMR. In this study, Balb/c-3T3 cells were exposed to 1800 MHz EMR for 80 days. The cells were harvested for cell proliferation detection, cell cycle assay, plate clone, and soft agar formation assay, transwell assay, and mRNA microarray detection. 1800 MHz EMR promoted Balb/c-3T3 proliferation. No clones were observed in both plate clone and soft agar clone formation assay. The percentage of cells in S phase in Balb/c-3T3 cells of 80d Expo was obviously higher than the percetage in 80d Sham cells. 80d Expo Balb/c-3T3 cells had stronger migration ability than Sham cells. The mRNA microarray results indicated that cell cycle, cell division, and DNA replication were the main biological processes the significant genes enriched, with higher expression of RPs and Mcms. 1800 MHz EMR promoted Balb/c-3T3 cells proliferation and migration. The mRNA microarray results indicated that cell cycle, cell division, and DNA replication were the main biological processes the significant genes enriched.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Shenzhen, China
| | - Xiaoyong Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Shenzhen, China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology , Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, China
| | - Shuicai Wu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology , Beijing, China
| |
Collapse
|
28
|
Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C, Steffens NA, Santos Stein C, Moresco RN, Garcia SC, Souza Vencato M, Brucker N. Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res (Camb) 2020; 9:778-789. [PMID: 33447362 PMCID: PMC7786178 DOI: 10.1093/toxres/tfaa079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Formaldehyde (FA) exposure has been proven to increase the risk of asthma and cancer. This study aimed to evaluate for 28 days the FA inhalation effects on oxidative stress, inflammation process, genotoxicity, and global DNA methylation in mice as well as to investigate the potential protective effects of melatonin. For that, analyses were performed on lung, liver and kidney tissues, blood, and bone marrow. Bronchoalveolar lavage was used to measure inflammatory parameters. Lipid peroxidation (TBARS), protein carbonyl (PCO), non-protein thiols (NPSH), catalase activity (CAT), comet assay, micronuclei (MN), and global methylation were determined. The exposure to 5-ppm FA resulted in oxidative damage to the lung, presenting a significant increase in TBARS and NO levels and a decrease in NPSH levels, besides an increase in inflammatory cells recruited for bronchoalveolar lavage. Likewise, in the liver tissue, the exposure to 5-ppm FA increased TBARS and PCO levels and decreased NPSH levels. In addition, FA significantly induced DNA damage, evidenced by the increase of % tail moment and MN frequency. The pretreatment of mice exposed to FA applying melatonin improved inflammatory and oxidative damage in lung and liver tissues and attenuated MN formation in bone marrow cells. The pulmonary histological study reinforced the results observed in biochemical parameters, demonstrating the potential beneficial role of melatonin. Therefore, our results demonstrated that FA exposure with repeated doses might induce oxidative damage, inflammatory, and genotoxic effects, and melatonin minimized the toxic effects caused by FA inhalation in mice.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS 93525-075, Brazil
| | - Gabriela Goethel
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Diana Muller
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Claiton Bau
- Department of Genetics, Instituto de Biociências, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Nadine Arnold Steffens
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carolina Santos Stein
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Solange Cristina Garcia
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Marina Souza Vencato
- Departament of Morphology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
29
|
Selmaoui B, Touitou Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. Bioelectromagnetics 2020; 42:5-17. [PMID: 33238059 DOI: 10.1002/bem.22310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
The extremely important use of mobile phones in the world, at all ages of life, including children and adolescents, leads to significant exposure of these populations to electromagnetic waves of radiofrequency. The question, therefore, arises as to whether exposure to these radiofrequencies (RFs) could lead to deleterious effects on the body's biological systems and health. In the current article, we review the effects, in laboratory animals and humans, of exposure to RF on two hormones considered as endocrine markers: melatonin, a neurohormone produced by the pineal gland and cortisol, a glucocorticosteroid synthesized by the adrenal glands. These two hormones are also considered as markers of the circadian system. The literature search was performed using PubMed, Medline, Web of Sciences (ISI Web of Knowledge), Google Scholar, and EMF Portal. From this review on RF effects on cortisol and melatonin, it appears that scientific papers in the literature are conflicting, showing effects, no effects, or inconclusive data. This implies the need for additional research on higher numbers of subjects and with protocols perfectly controlled with follow-up studies to better determine whether the chronic effect of RF on the biological functioning and health of users exists (or not). Bioelectromagnetics. 2021;42:5-17. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Brahim Selmaoui
- Department of Experimental Toxicology, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.,PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Yvan Touitou
- Fondation Ophtalmologique A. de Rothschild, Unité de Chronobiologie, Paris, France
| |
Collapse
|
30
|
Shokri M, Shamsaei ME, Malekshah AK, Amiri FT. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model. Andrologia 2020; 52:e13834. [PMID: 33040351 DOI: 10.1111/and.13834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Radiofrequency electromagnetic radiation (RF-EMR) from mobile devices has undesirable effects on the male reproductive organs. Melatonin with antioxidant potential can help to prevent these damages. Therefore, the aim of this study was to evaluate the protective effect of melatonin on testicular damage induced by RF-EMR of mobile phone. In this experimental study, 32 adult male BALB/c mice were divided randomly into four groups: control, melatonin (2 mg/kg, for 30 consecutive days, intraperitoneally), RF-EMR (900 MHz, 100 to 300 MT, 54 to 160 W/m) (4 hr per day, whole body) and melatonin + RF-EMR groups. One day after the last prescription were evaluated oxidative stress parameters, testosterone level and histopathological assays of the testis. EMR of mobile phone led to the induction of oxidative stress, testicular tissue damage and decreased testosterone. Treatment with melatonin improved oxidative stress parameters such as MDA and GSH, and testis injury score, increased the thickness of the germinal epithelial thickness and diameter of the seminiferous tubule, and decreased testosterone hormone in the EMR-exposed mice, and these differences were significant(p < .05). Data showed that melatonin with its antioxidant property can decrease oxidative damage induced by RF-EMR of mobile phones on testis tissue.
Collapse
Affiliation(s)
- Mitra Shokri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad E Shamsaei
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali K Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh T Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
31
|
Riviere E, Rossi SP, Tavalieri YE, Muñoz de Toro MM, Ponzio R, Puigdomenech E, Levalle O, Martinez G, Terradas C, Calandra RS, Matzkin ME, Frungieri MB. Melatonin daily oral supplementation attenuates inflammation and oxidative stress in testes of men with altered spermatogenesis of unknown aetiology. Mol Cell Endocrinol 2020; 515:110889. [PMID: 32622722 DOI: 10.1016/j.mce.2020.110889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown an inverse correlation between testicular melatonin concentration and inflammation/oxidative stress-related markers levels in infertile men showing unexplained azoospermia. Here, we evaluated the impact of melatonin oral supplementation (daily 3 mg dose used to treat sleep disorders) in the incidence of local inflammation, oxidative stress, and tubular wall fibrosis development in young and middle-aged infertile adult men. Compared with testes without histological alterations, gonads with morphological abnormalities showed lower melatonin concentration along with increased macrophage numbers, TBARS generation, and expression levels of inflammation-related markers and antioxidant enzymes, as well as tubular wall collagen fibers disorganization and thickening. Melatonin oral supplementation not only increased its own testicular levels but also decreased inflammation- and oxidative stress-related markers levels, and improved the tubular wall aspect. Overall, our work provides insights into the potential benefits of melatonin on the inflammatory and oxidative status in testes of patients suffering from unexplained infertility.
Collapse
Affiliation(s)
- Eugenia Riviere
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina
| | - Soledad P Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Mónica M Muñoz de Toro
- Instituto de Salud y Ambiente del Litoral, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, 3000, Argentina
| | - Roberto Ponzio
- Instituto de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1121ABG, Argentina
| | | | - Oscar Levalle
- División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1405DCS, Argentina
| | | | - Claudio Terradas
- Instituto Médico PREFER, San Martín, Buenos Aires, B1650, Argentina; División Endocrinología, Hospital Durand, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1405DCS, Argentina; Fertilidad San Isidro, Buenos Aires, B1642, Argentina
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina.
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires, C1428ADN, Argentina; Cátedra de Química, Ciclo Básico Común, Ciudad de Buenos Aires, C1405CAE, Argentina
| |
Collapse
|
32
|
Azimzadeh M, Jelodar G. Trace elements homeostasis in brain exposed to 900 MHz RFW emitted from a BTS-antenna model and the protective role of vitamin E. J Anim Physiol Anim Nutr (Berl) 2020; 104:1568-1574. [PMID: 32279387 DOI: 10.1111/jpn.13360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
Advances in telecommunication and their broad usage in the community have become a great concern from the health aspect. The object of the present study was to examine the effects of exposure to 900 MHz RFW on brain Iron (Fe), Copper (Cu), Zinc (Zn) and Manganese (Mn) concentration, and the protective role of pre-treatment of vitamin E on mentioned elements homoeostasis. Twenty adult male Sprague-Dawley rats (200 ± 20 g) randomly were divided into four groups. Control group (without any exposure, received distilled water), treatment control group (orally received 250 mg/kg BW/d vitamin E), treatment group (received 250 mg/kg BW/d vitamin E and exposed to 900 MHz RFW) and sham-exposed group (exposed to 900 MHz RFW). Animals (with freely moving in the cage) were exposed to RFW for 30 consecutive days (4 hr/day). The levels of the above mentioned elements in the brain tissue were determined on the last day using atomic absorption spectrophotometry. Exposure to 900 MHz RFW induced a significant increase in the Fe, Cu, Mn levels and Cu/Zn ratio accompanied by a significant decrease in Zn level in the sham-exposed group compare to control group. Vitamin E pre-treatment improved the level of Fe, Cu, Mn and Cu/Zn ratio, except in the Zn concentration. Exposure to 900 MHz RFW caused disrupted trace elements homoeostasis in the brain tissue and administration of vitamin E as an antioxidant and neuroprotective agent improved the situation.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamali Jelodar
- Department of Basic Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
33
|
Szilágyi Z, Németh Z, Bakos J, Necz PP, Sáfár A, Kubinyi G, Selmaoui B, Thuróczy G. Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124401. [PMID: 32575398 PMCID: PMC7344923 DOI: 10.3390/ijerph17124401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Zsuzsanna Németh
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - József Bakos
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
- Correspondence: ; Tel.: +36-1-482-2019
| | - Péter Pál Necz
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Anna Sáfár
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Györgyi Kubinyi
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| | - Brahim Selmaoui
- Department of Experimental Toxicology, National Institute of Industrial Environment and Risks (INERIS), 60550 Verneuilen Halate, France;
- PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, 80025 Amiens, France
| | - György Thuróczy
- Department of Non-ionizing radiation, National Public Health Center, H-1221 Budapest, Hungary; (Z.S.); (Z.N.); (P.P.N.); (A.S.); (G.K.); (G.T.)
| |
Collapse
|
34
|
Mohammadghasemi F. Melatonin, antioxidant capacity, and male reproductive function. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Iwan P, Stepniak J, Karbownik-Lewinska M. Melatonin reduces high levels of lipid peroxidation induced by potassium iodate in porcine thyroid. INT J VITAM NUTR RES 2019; 91:271-277. [PMID: 31842692 DOI: 10.1024/0300-9831/a000628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.
Collapse
Affiliation(s)
- Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Jan Stepniak
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| |
Collapse
|
36
|
Alkis ME, Akdag MZ, Dasdag S, Yegin K, Akpolat V. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1696702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Mehmet Esref Alkis
- Departmen of Occupational Health and Safety, Health School, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Engineering School, Ege University, Izmir, Turkey
| | - Veysi Akpolat
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
37
|
Vornoli A, Falcioni L, Mandrioli D, Bua L, Belpoggi F. The Contribution of In Vivo Mammalian Studies to the Knowledge of Adverse Effects of Radiofrequency Radiation on Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3379. [PMID: 31547363 PMCID: PMC6765993 DOI: 10.3390/ijerph16183379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
The proliferation of cellular antennas and other radiofrequency radiation (RFR) generating devices of the last decades has led to more and more concerns about the potential health effects from RFR exposure. Since the 2011 classification as a possible carcinogen by the International Agency for Research on Cancer (IARC), more experimental studies have been published that support a causal association between RFR exposure and health hazards. As regard cancer risk, two long-term experimental studies have been recently published by the US National Toxicology Program (NTP) and the Italian Ramazzini Institute (RI). Despite important experimental differences, both studies found statistically significant increases in the development of the same type of very rare glial malignant tumors. In addition to carcinogenicity, reproductive organs might be particularly exposed, as well as sensitive to RFR. In this work, we reviewed the currently available evidence from in vivo studies on carcinogenicity and reproductive toxicity studies in order to summarize the contribution of experimental research to the prevention of the adverse effects of RFR on human health.
Collapse
Affiliation(s)
- Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy.
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy.
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy.
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy.
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Castello di Bentivoglio, via Saliceto 3, Bentivoglio, 40010 Bologna, Italy.
| |
Collapse
|
38
|
Guo L, Lin JJ, Xue YZ, An GZ, Zhang JP, Zhang KY, He W, Wang H, Li W, Ding GR. Effects of 220 MHz Pulsed Modulated Radiofrequency Field on the Sperm Quality in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1286. [PMID: 30974849 PMCID: PMC6480634 DOI: 10.3390/ijerph16071286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
Abstract
Under some occupational conditions, workers are inevitably exposed to high-intensity radiofrequency (RF) fields. In this study, we investigated the effects of one-month exposure to a 220 MHz pulsed modulated RF field at the power density of 50 W/m² on the sperm quality in male adult rats. The sperm quality was evaluated by measuring the number, abnormality and survival rate of sperm cells. The morphology of testis was examined by hematoxylin-eosin (HE) staining. The levels of secreting factors by Sertoli cells (SCs) and Leydig cells (LCs) were determined by enzyme linked immunosorbent assay (ELISA). The level of cleaved caspase 3 in the testis was detected by immunofluorescence staining. Finally, the expression levels of the apoptosis-related protein (caspase 3, BAX and BCL2) in the testis were assessed by Western blotting. Compared with the sham group, the sperm quality in the RF group decreased significantly. The levels of secreting factors of SCs and the morphology of the testis showed an obvious change after RF exposure. The level of the secreting factor of LCs decreased significantly after RF exposure. The levels of cleaved caspase 3, caspase 3, and the BAX/BCL2 ratio in the testis increased markedly after RF exposure. These data collectively suggested that under the present experimental conditions, 220 MHz pulsed modulated RF exposure could impair sperm quality in rats, and the disruption of the secreting function of LCs and increased apoptosis of testis cells induced by the RF field might be accounted for by this damaging effect.
Collapse
Affiliation(s)
- Ling Guo
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| | - Jia-Jin Lin
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| | - Yi-Zhe Xue
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Guang-Zhou An
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| | - Jun-Ping Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Ke-Ying Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Wei He
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| | - Huan Wang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| | - Wei Li
- Department of Histology and Embryology, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Gui-Rong Ding
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, 169# Chang Le West Road, Xi'an 710032, China.
| |
Collapse
|
39
|
Liu FJ, Dong WY, Zhao H, Shi XH, Zhang YL. Effect of molybdenum on reproductive function of male mice treated with busulfan. Theriogenology 2019; 126:49-54. [PMID: 30530157 DOI: 10.1016/j.theriogenology.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
|
40
|
Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5076271. [PMID: 30533171 PMCID: PMC6250044 DOI: 10.1155/2018/5076271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Modern technologies relying on wireless communication systems have brought increasing levels of electromagnetic field (EMF) exposure. This increased research interest in the effects of these radiations on human health. There is compelling evidence that EMFs affect cell physiology by altering redox-related processes. Considering the importance of redox milieu in the biological competence of oocyte and sperm, we reviewed the existing literature regarding the effects of EMFs on reproductive systems. Given the role of mitochondria as the main source of reactive oxygen species (ROS), we focused on the hypothesis of a mitochondrial basis of EMF-induced reproductive toxicity. MEDLINE, Web of Science, and Scopus database were examined for peer-reviewed original articles by searching for the following keywords: “extremely low frequency electromagnetic fields (ELF-EMFs),” “radiofrequency (RF),” “microwaves,” “Wi-Fi,” “mobile phone,” “oxidative stress,” “mitochondria,” “fertility,” “sperm,” “testis,” “oocyte,” “ovarian follicle,” and “embryo.” These keywords were combined with other search phrases relevant to the topic. Although we reported contradictory data due to lack of uniformity in the experimental designs, a growing body of evidence suggests that EMF exposure during spermatogenesis induces increased ROS production associated with decreased ROS scavenging activity. Numerous studies revealed the detrimental effects of EMFs from mobile phones, laptops, and other electric devices on sperm quality and provide evidence for extensive electron leakage from the mitochondrial electron transport chain as the main cause of EMF damage. In female reproductive systems, the contribution of oxidative stress to EMF-induced damages and the evidence of mitochondrial origin of ROS overproduction are reported, as well. In conclusion, mitochondria seem to play an important role as source of ROS in both male and female reproductive systems under EMF exposure. Future and more standardized studies are required for a better understanding of molecular mechanisms underlying EMF potential challenge to our reproductive system in order to improve preventive strategies.
Collapse
|