1
|
Aschner M, Skalny AV, Lu R, Santamaria A, Paoliello MMB, Tsatsakis A, Kirichuk AA, Li YF, Domingo JL, Tinkov AA. Toxic effects of aluminum nanoparticles: a review. Nanotoxicology 2025:1-40. [PMID: 40448931 DOI: 10.1080/17435390.2025.2511694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025]
Abstract
The objective of this state-of-the-art review is to summarize contemporary data on the potential toxic effects of aluminum nanoparticles (AlNPs) and discuss the underlying molecular mechanisms. In vivo studies using laboratory rodents demonstrate that lungs, liver, brain, and the immune system are the primary targets for AlNPs toxicity. Specifically, inhalation exposure to AlNPs induces lung damage by promoting inflammatory infiltration, airway remodeling, septal thickening, and bronchial hyperresponsiveness. AlNPs-induced liver damage is characterized by hepatocyte degeneration and necrosis, liver sinusoid congestion, inflammation, and fibrosis. AlNPs induces neurotoxicity resulting in neurodegeneration, neuroinflammation, altered neurotransmitter metabolism, and subsequent adverse neurobehavioral outcome. In turn, immunotoxicity of AlNPs is characterized by promotion of systemic inflammation along with impaired phagocytosis. In addition to the toxicity exerted by Al2O3NPs itself, the observed toxic effects of AlNPs may be attributed to Al3+ release from the particles with the subsequent induction of oxidative stress, inflammation, mitochondrial dysfunction, genotoxicity, cell cycle dysregulation, and cell death due to apoptosis, necrosis, and ferroptosis. It is also evident that both the size and the form of AlNPs significantly affect its cytotoxicity. However, further studies are required to explore the mechanisms of toxic effects of AlNPs, as well as its potential adverse effects on human health.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - Anatoly A Kirichuk
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Reus, Spain
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
2
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
3
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|