1
|
Thakkar N, Giesecke A, Bazalova O, Martinek J, Smykal V, Stanewsky R, Dolezel D. Evolution of casein kinase 1 and functional analysis of new doubletime mutants in Drosophila. Front Physiol 2022; 13:1062632. [PMID: 36589447 PMCID: PMC9794997 DOI: 10.3389/fphys.2022.1062632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian clocks are timing devices that rhythmically adjust organism's behavior, physiology, and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks rely on several interlocked transcription-translation feedback loops, where protein stability is the key part of the delay between transcription and the appearance of the mature proteins within the feedback loops. In bilaterian animals, including mammals and insects, the circadian clock depends on a homologous set of proteins. Despite mostly conserved clock components among the fruit fly Drosophila and mammals, several lineage-specific differences exist. Here we have systematically explored the evolution and sequence variability of insect DBT proteins and their vertebrate homologs casein kinase 1 delta (CKIδ) and epsilon (CKIε), dated the origin and separation of CKIδ from CKIε, and identified at least three additional independent duplications of the CKIδ/ε gene in Petromyzon, Danio, and Xenopus. We determined conserved regions in DBT specific to Diptera, and functionally tested a subset of those in D. melanogaster. Replacement of Lysine K224 with acidic residues strongly impacts the free-running period even in heterozygous flies, whereas homozygous mutants are not viable. K224D mutants have a temperature compensation defect with longer free-running periods at higher temperatures, which is exactly the opposite trend of what was reported for corresponding mammalian mutants. All DBTs of dipteran insects contain the NKRQK motif at positions 220-224. The occurrence of this motif perfectly correlates with the presence of BRIDE OF DOUBLETIME, BDBT, in Diptera. BDBT is a non-canonical FK506-binding protein that physically interacts with Drosophila DBT. The phylogeny of FK506-binding proteins suggests that BDBT is either absent or highly modified in non-dipteran insects. In addition to in silico analysis of DBT/CKIδ/ε evolution and diversity, we have identified four novel casein kinase 1 genes specific to the Drosophila genus.
Collapse
Affiliation(s)
- Nirav Thakkar
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Astrid Giesecke
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Olga Bazalova
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Jan Martinek
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Vlastimil Smykal
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - David Dolezel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
2
|
Strutt H, Strutt D. DAnkrd49 and Bdbt act via Casein kinase Iε to regulate planar polarity in Drosophila. PLoS Genet 2020; 16:e1008820. [PMID: 32750048 PMCID: PMC7402468 DOI: 10.1371/journal.pgen.1008820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022] Open
Abstract
The core planar polarity proteins are essential mediators of tissue morphogenesis, controlling both the polarised production of cellular structures and polarised tissue movements. During development the core proteins promote planar polarisation by becoming asymmetrically localised to opposite cell edges within epithelial tissues, forming intercellular protein complexes that coordinate polarity between adjacent cells. Here we describe a novel protein complex that regulates the asymmetric localisation of the core proteins in the Drosophila pupal wing. DAnkrd49 (an ankyrin repeat protein) and Bride of Doubletime (Bdbt, a non-canonical FK506 binding protein family member) physically interact, and regulate each other’s levels in vivo. Loss of either protein results in a reduction in core protein asymmetry and disruption of the placement of trichomes at the distal edge of pupal wing cells. Post-translational modifications are thought to be important for the regulation of core protein behaviour and their sorting to opposite cell edges. Consistent with this, we find that loss of DAnkrd49 or Bdbt leads to reduced phosphorylation of the core protein Dishevelled and to decreased Dishevelled levels both at cell junctions and in the cytoplasm. Bdbt has previously been shown to regulate activity of the kinase Discs Overgrown (Dco, also known as Doubletime or Casein Kinase Iε), and Dco itself has been implicated in regulating planar polarity by phosphorylating Dsh as well as the core protein Strabismus. We demonstrate that DAnkrd49 and Bdbt act as dominant suppressors of Dco activity. These findings support a model whereby Bdbt and DAnkrd49 act together to modulate the activity of Dco during planar polarity establishment. In many animal tissues, sheets of cells are polarised in the plane of the tissue, which is evident by the production of polarised structures, such as hairs on the fly wing that point in the same direction or cilia that beat in the same direction. One group of proteins controlling this coordinated polarity are the core planar polarity proteins, which localise asymmetrically within cells such that some core proteins localise to one cell end and others to the opposite cell end. It is thought that modifications such as phosphorylation may locally regulate core protein stability, and this promotes sorting of proteins to different cell ends. We identify two proteins, DAnkrd49 and Bdbt, that form a complex and regulate core protein asymmetry. Loss of either protein causes a reduction in overall levels of the core protein Dishevelled (Dsh), and a reduction in its phosphorylation. We provide evidence that the effect on core protein asymmetry is mediated via regulation of the kinase activity of Discs overgrown (Dco, also known as Doubletime/Casein Kinase Iε) by DAnkrd49 and Bdbt. We propose that modulation of Dco activity by DAnkrd49 and Bdbt is a key step in the sorting of core proteins to opposite cell ends.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (HS); (DS)
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (HS); (DS)
| |
Collapse
|
3
|
Keshvari M, Nejadtaghi M, Hosseini-Beheshti F, Rastqar A, Patel N. Exploring the role of circadian clock gene and association with cancer pathophysiology. Chronobiol Int 2019; 37:151-175. [PMID: 31791146 DOI: 10.1080/07420528.2019.1681440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body's internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.
Collapse
Affiliation(s)
- Mahtab Keshvari
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Mahdieh Nejadtaghi
- Department of Medical Genetics, faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Rastqar
- Department of Psychiatry and Neuroscience, Université Laval, Quebec, Canada
| | - Niraj Patel
- Centre de Recherche CERVO, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Strutt H, Gamage J, Strutt D. Reciprocal action of Casein Kinase Iε on core planar polarity proteins regulates clustering and asymmetric localisation. eLife 2019; 8:45107. [PMID: 31090542 PMCID: PMC6542583 DOI: 10.7554/elife.45107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
The conserved core planar polarity pathway is essential for coordinating polarised cell behaviours and the formation of polarised structures such as cilia and hairs. Core planar polarity proteins localise asymmetrically to opposite cell ends and form intercellular complexes that link the polarity of neighbouring cells. This asymmetric segregation is regulated by phosphorylation through poorly understood mechanisms. We show that loss of phosphorylation of the core protein Strabismus in the Drosophila pupal wing increases its stability and promotes its clustering at intercellular junctions, and that Prickle negatively regulates Strabismus phosphorylation. Additionally, loss of phosphorylation of Dishevelled - which normally localises to opposite cell edges to Strabismus - reduces its stability at junctions. Moreover, both phosphorylation events are independently mediated by Casein Kinase Iε. We conclude that Casein Kinase Iε phosphorylation acts as a switch, promoting Strabismus mobility and Dishevelled immobility, thus enhancing sorting of these proteins to opposite cell edges.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Jessica Gamage
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Xing L, An Y, Shi G, Yan J, Xie P, Qu Z, Zhang Z, Liu Z, Pan D, Xu Y. Correlated evolution between CK1δ Protein and the Serine-rich Motif Contributes to Regulating the Mammalian Circadian Clock. J Biol Chem 2016; 292:161-171. [PMID: 27879317 DOI: 10.1074/jbc.m116.751214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanism underlying the physiological divergence of species is a long-standing issue in evolutionary biology. The circadian clock is a highly conserved system existing in almost all organisms that regulates a wide range of physiological and behavioral events to adapt to the day-night cycle. Here, the interactions between hCK1ϵ/δ/DBT (Drosophila ortholog of CK1δ/ϵ) and serine-rich (SR) motifs from hPER2 (ortholog of Drosophila per) were reconstructed in a Drosophila circadian system. The results indicated that in Drosophila, the SR mutant form hPER2S662G does not recapitulate the mouse or human mutant phenotype. However, introducing hCK1δ (but not DBT) shortened the circadian period and restored the SR motif function. We found that hCK1δ is catalytically more efficient than DBT in phosphorylating the SR motif, which demonstrates that the evolution of CK1δ activity is required for SR motif modulation. Moreover, an abundance of phosphorylatable SR motifs and the striking emergence of putative SR motifs in vertebrate proteins were observed, which provides further evidence that the correlated evolution between kinase activity and its substrates set the stage for functional diversity in vertebrates. It is possible that such correlated evolution may serve as a biomarker associated with the adaptive benefits of diverse organisms. These results also provide a concrete example of how functional synthesis can be achieved through introducing evolutionary partners in vivo.
Collapse
Affiliation(s)
- Lijuan Xing
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Yang An
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Guangsen Shi
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Jie Yan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Pancheng Xie
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhipeng Qu
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhihui Zhang
- the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| | - Zhiwei Liu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Dejing Pan
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and
| | - Ying Xu
- From the Cambridge-Suda Genomic Resource Center, Soochow University, 199 Renai Road, Suzhou 215123 and .,the MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing 210061, China
| |
Collapse
|
6
|
Cermelli S, Jang IS, Bernard B, Grandori C. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med 2014; 4:4/3/a014209. [PMID: 24591535 DOI: 10.1101/cshperspect.a014209] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although therapeutics against MYC could potentially be used against a wide range of human cancers, MYC-targeted therapies have proven difficult to develop. The convergence of breakthroughs in human genomics and in gene silencing using RNA interference (RNAi) have recently allowed functional interrogation of the genome and systematic identification of synthetic lethal interactions with hyperactive MYC. Here, we focus on the pathways that have emerged through RNAi screens and present evidence that a subset of genes showing synthetic lethality with MYC are significantly interconnected and linked to chromatin and transcriptional processes, as well as to DNA repair and cell cycle checkpoints. Other synthetic lethal interactions with MYC point to novel pathways and potentially broaden the repertoire of targeted therapies. The elucidation of MYC synthetic lethal interactions is still in its infancy, and how these interactions may be influenced by tissue-specific programs and by concurrent genetic change will require further investigation. Nevertheless, we predict that these studies may lead the way to novel therapeutic approaches and new insights into the role of MYC in cancer.
Collapse
Affiliation(s)
- Silvia Cermelli
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | | | | | |
Collapse
|
7
|
Noncanonical FK506-binding protein BDBT binds DBT to enhance its circadian function and forms foci at night. Neuron 2013; 80:984-96. [PMID: 24210908 DOI: 10.1016/j.neuron.2013.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 11/22/2022]
Abstract
The kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knockdown of CG17282 produced behavioral arrhythmicity and long periods and high levels of hypophosphorylated nuclear PERIOD and phosphorylated DOUBLETIME. Overexpression of DOUBLETIME in flies suppresses these phenotypes and overexpression of CG17282 in S2 cells enhances DOUBLETIME-dependent PERIOD degradation, indicating that CG17282 stimulates DOUBLETIME's circadian function. In photoreceptors, CG17282 accumulates rhythmically in PERIOD- and DOUBLETIME-dependent cytosolic foci. Finally, structural analyses demonstrated CG17282 is a noncanonical FK506-binding protein with an inactive peptide prolyl-isomerase domain that binds DOUBLETIME and tetratricopeptide repeats that may promote assembly of larger protein complexes. We have named CG17282 BRIDE OF DOUBLETIME and established it as a mediator of DOUBLETIME's effects on PERIOD, most likely in cytosolic foci that regulate PERIOD nuclear accumulation.
Collapse
|
8
|
Ahmad ST, Steinmetz SB, Bussey HM, Possidente B, Seggio JA. Larval ethanol exposure alters free-running circadian rhythm and per Locus transcription in adult D. melanogaster period mutants. Behav Brain Res 2012; 241:50-5. [PMID: 23219838 DOI: 10.1016/j.bbr.2012.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 01/02/2023]
Abstract
Alcohol consumption causes disruptions in a variety of daily rhythms, including the circadian free-running rhythm. A previous study conducted in our laboratories has shown that larval ethanol exposure alters the free-running period in adult Canton-S Drosophila melanogaster. Few studies, however, have explored the effect of alcohol exposure on organisms exhibiting circadian periods radically different than (normal) 24-h. We reared Canton-S, period long, and period short Drosophila melanogaster larvae on 10%-ethanol supplemented food, and assessed their adult free-running locomotor activity and period transcript at ZT 12. We demonstrate that in Canton-S larval ethanol exposure shortens the adult free-running locomotor activity but does not significantly alter period mRNA levels at ZT 12. Period long mutants exposed to larval ethanol had significantly shortened adult free-running locomotor activity rhythms and decreased period mRNA levels, while period short mutants lengthened their free-running rhythm and showed increased period mRNA levels at ZT 12 after being exposed to larval ethanol. These results indicate that the effects of ethanol on the circadian clock might depend upon the baseline circadian period of the organism or that period mutant gene expression is sensitive to developmental ethanol treatment.
Collapse
Affiliation(s)
- S Tariq Ahmad
- Department of Biology, 5720 Mayflower Hill Dr., Colby College, Waterville, ME 04901, USA
| | | | | | | | | |
Collapse
|
9
|
Speed control: cogs and gears that drive the circadian clock. Trends Neurosci 2012; 35:574-85. [PMID: 22748426 DOI: 10.1016/j.tins.2012.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 01/29/2023]
Abstract
In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator.
Collapse
|
10
|
Syed S, Saez L, Young MW. Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J Biol Chem 2011; 286:27654-62. [PMID: 21659538 PMCID: PMC3149356 DOI: 10.1074/jbc.m111.243618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/26/2011] [Indexed: 11/06/2022] Open
Abstract
Robust circadian oscillations of the proteins PERIOD (PER) and TIMELESS (TIM) are hallmarks of a functional clock in the fruit fly Drosophila melanogaster. Early morning phosphorylation of PER by the kinase Doubletime (DBT) and subsequent PER turnover is an essential step in the functioning of the Drosophila circadian clock. Here using time-lapse fluorescence microscopy we study PER stability in the presence of DBT and its short, long, arrhythmic, and inactive mutants in S2 cells. We observe robust PER degradation in a DBT allele-specific manner. With the exception of doubletime-short (DBT(S)), all mutants produce differential PER degradation profiles that show direct correspondence with their respective Drosophila behavioral phenotypes. The kinetics of PER degradation with DBT(S) in cell culture resembles that with wild-type DBT and posits that, in flies DBT(S) likely does not modulate the clock by simply affecting PER degradation kinetics. For all the other tested DBT alleles, the study provides a simple model in which the changes in Drosophila behavioral rhythms can be explained solely by changes in the rate of PER degradation.
Collapse
Affiliation(s)
- Sheyum Syed
- From the Laboratory of Genetics, The Rockefeller University, New York, New York 10065
| | - Lino Saez
- From the Laboratory of Genetics, The Rockefeller University, New York, New York 10065
| | - Michael W. Young
- From the Laboratory of Genetics, The Rockefeller University, New York, New York 10065
| |
Collapse
|
11
|
Chronic treatment with a selective inhibitor of casein kinase I delta/epsilon yields cumulative phase delays in circadian rhythms. Psychopharmacology (Berl) 2010; 210:569-76. [PMID: 20407760 DOI: 10.1007/s00213-010-1860-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Casein kinase I epsilon/delta phosphorylates certain clock-related proteins as part of a complex arrangement of transcriptional/translational feedback loops that comprise the circadian oscillator in mammals. Pharmacologic inhibition leads to a delay of the oscillations with the magnitude of this effect dependent upon the timing of drug administration. OBJECTIVE Earlier studies by our lab described the actions of a selective CKI epsilon/delta inhibitor, PF-670462, on circadian behavior following acute dosing; the present work extended these studies to chronic once-daily treatment. METHODS Gross motor activity was used to estimate the circadian rhythms of rats maintained under a 12 L:12 D cycle. PF-670462, 10 or 30 mg/kg/day s.c., was administered once daily for 20 days either at ZT6 or ZT11 (i.e., 6 or 11 h after light onset). RESULTS Chronic administration of PF-670462, performed at a fixed time of day, produced delays in the activity onsets of rats that cumulated with the duration of dosing. Dosing at ZT11 yielded more robust delays than dosing at ZT6 in keeping with earlier phase-response analyses with this agent. CONCLUSIONS The magnitude of the shifts in activity onsets achieved with chronic dosing of PF-670462 appears to be a function of the dose and the previously established phase relationship. Its cumulative effect further suggests that the pharmacodynamic t (1/2) of the drug greatly exceeds its pharmacokinetic one. Most importantly, these changes in circadian behavior occurred in the presence of a fixed L:D cycle, confirming the drug to be a robust modulator of circadian phase in the presence of the natural zeitgeber.
Collapse
|
12
|
Abstract
AbstractCircadian clocks are based on a molecular mechanism regulated at the transcriptional, translational and post-translational levels. Recent experimental data unravel a complex role of the phosphorylations in these clocks. In mammals, several kinases play differential roles in the regulation of circadian rhythmicity. A dysfunction in the phosphorylation of one clock protein could lead to sleep disorders such as the Familial Advanced Sleep Phase Disorder, FASPS. Moreover, several drugs are targeting kinases of the circadian clocks and can be used in cancer chronotherapy or to treat mood disorders. In Drosophila, recent experimental observations also revealed a complex role of the phosphorylations. Because of its high degree of homology with mammals, the Drosophila system is of particular interest. In the circadian clock of cyanobacteria, an atypical regulatory mechanism is based only on three clock proteins (KaiA, KaiB, KaiC) and ATP and is sufficient to produce robust temperature-compensated circadian oscillations of KaiC phosphorylation. This review will show how computational modeling has become a powerful and useful tool in investigating the regulatory mechanism of circadian clocks, but also how models can give rise to testable predictions or reveal unexpected results.
Collapse
|
13
|
Abstract
Both casein kinase 1 delta (CK1delta) and epsilon (CK1epsilon) phosphorylate core clock proteins of the mammalian circadian oscillator. To assess the roles of CK1delta and CK1epsilon in the circadian clock mechanism, we generated mice in which the genes encoding these proteins (Csnk1d and Csnk1e, respectively) could be disrupted using the Cre-loxP system. Cre-mediated excision of the floxed exon 2 from Csnk1d led to in-frame splicing and production of a deletion mutant protein (CK1delta(Delta2)). This product is nonfunctional. Mice homozygous for the allele lacking exon 2 die in the perinatal period, so we generated mice with liver-specific disruption of CK1delta. In livers from these mice, daytime levels of nuclear PER proteins, and PER-CRY-CLOCK complexes were elevated. In vitro, the half-life of PER2 was increased by approximately 20%, and the period of PER2::luciferase bioluminescence rhythms was 2 h longer than in controls. Fibroblast cultures from CK1delta-deficient embryos also had long-period rhythms. In contrast, disruption of the gene encoding CK1epsilon did not alter these circadian endpoints. These results reveal important functional differences between CK1delta and CK1epsilon: CK1delta plays an unexpectedly important role in maintaining the 24-h circadian cycle length.
Collapse
|
14
|
Kivimäe S, Saez L, Young MW. Activating PER repressor through a DBT-directed phosphorylation switch. PLoS Biol 2008; 6:e183. [PMID: 18666831 PMCID: PMC2486307 DOI: 10.1371/journal.pbio.0060183] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT), a Drosophila ortholog of human casein kinase I (CKI)ɛ/δ. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER). DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The perS mutation, which is associated with short-period (19-h) circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function. Most proteins involved in circadian transcriptional feedback loops undergo reversible chemical modifications (called phosphorylation) that regulate their activity in a time-of-day–dependent manner. Doubletime (DBT), a Drosophila kinase, phosphorylates the circadian transcriptional repressor PERIOD (PER). Mutations of dbt shorten or lengthen the period of circadian behavioral rhythms, or abolish the rhythms altogether in flies. A mutation of the human ortholog of dbt, casein kinase I (CKI)δ, has been associated with certain forms of a heritable sleep disorder. The disorder may reflect altered activity of a human PER protein, as the syndrome can also be caused by mutation of a CKIɛ/δ phosphorylation site within PER2. In this study, we locate DBT-directed phosphorylation sites in the Drosophila PER protein, including a DBT target region of PER that was previously shown to regulate DBT activity. Two PER domains within this region appear to serve as alternative targets for DBT. Phosphorylation of the upstream domain seems to suppress phosphorylation elsewhere in the region, producing a stable PER protein with little activity as a transcriptional repressor. However, when phosphorylation of the upstream domain is blocked, downstream DBT targets appear to be phosphorylated, producing a highly active, but short-lived repressor. Our results suggest that ordered patterns of DBT-directed phosphorylation contribute to the timing of PER's function and disappearance, and thus influence the pace of the circadian clock. Two phosphorylation domains inDrosophila PERIOD protein interact in a switch-like fashion with each other and the kinase DOUBLETIME to regulate PER's stability and activity as a transcriptional repressor in the circadian transcriptional feedback loop.
Collapse
Affiliation(s)
- Saul Kivimäe
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function. Genetics 2008; 181:139-52. [PMID: 18957703 DOI: 10.1534/genetics.108.094805] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations lowering the kinase activity of Drosophila Doubletime (DBT) and vertebrate casein kinase Iepsilon/delta (CKIepsilon/delta) produce long-period, short-period, and arrhythmic circadian rhythms. Since most ckI short-period mutants have been isolated in mammals, while the long-period mutants have been found mostly in Drosophila, lowered kinase activity may have opposite consequences in flies and vertebrates, because of differences between the kinases or their circadian mechanisms. However, the results of this article establish that the Drosophila dbt mutations have similar effects on period (PER) protein phosphorylation by the fly and vertebrate enzymes in vitro and that Drosophila DBT has an inhibitory C-terminal domain and exhibits autophosphorylation, as does vertebrate CKIepsilon/delta. Moreover, expression of either Drosophila DBT or the vertebrate CKIdelta kinase carrying the Drosophila dbt(S) or vertebrate tau mutations in all circadian cells leads to short-period circadian rhythms. By contrast, vertebrate CKIdelta carrying the dbt(L) mutation does not lengthen circadian rhythms, while Drosophila DBT(L) does. Different effects of the dbt(S) and tau mutations on the oscillations of PER phosphorylation suggest that the mutations shorten the circadian period differently. The results demonstrate a high degree of evolutionary conservation of fly and vertebrate CKIdelta and of the functions affected by their period-shortening mutations.
Collapse
|