1
|
Subaşı Turgut F, Bulut M, Hattapoğlu S, Güneş M, Cemal Kaya M, Ekici F, Guli Çetinçakmak M, Kaplan İ, Atmaca M. The relationship between oxidative stress markers and 1H-Magnetic resonance spectroscopy findings in obsessive compulsive disorder. Brain Res 2024; 1833:148852. [PMID: 38494099 DOI: 10.1016/j.brainres.2024.148852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The purpose of this study was to examine N-acetyl aspartate (NAA)/creatine (Cr) and glutamate, glutamine, and gamma-aminobutyric acid complex (Glx)/Cr levels in patients with obsessive compulsive disorder (OCD) and healthy controls' orbitofrontal cortex (OFC) and caudate nucleus (CN) by proton magnetic resonance spectroscopy (1H-MRS) method and to investigate their relationship with oxidative stress markers glutathione peroxidase (GPx) and superoxide dismutase (SOD). METHODS This study included patients with OCD (n = 25) and healthy controls (n = 25) ranging in age from 18 to 65. We used the ELISA method to evaluate serum SOD and GPx levels. Levels of NAA/Cr and Glx/Cr in the orbitofrontal cortex and caudate nucleus were measured using the 1H-MRS method. RESULTS Our study did not detect statistically significant differences in the orbitofrontal cortex Glx/Cr and NAA/Cr levels between the OCD patients and the control group. OCD patients exhibited a decrease in NAA/Cr levels, consistent with impaired neuronal integration, and an increase in Glx/Cr levels, consistent with hyperactivation, in the caudate nucleus compared to the control group. We observed a negative correlation between NAA/Cr levels in the caudate nucleus and the levels of SOD and GPx. CONCLUSIONS Our study is the first to assess CN and OFC together in OCD patients using 3 T MR, investigating the relationship between neurometabolite concentrations and oxidative stress parameters. The negative correlation we observed between NAA/Cr levels and SOD and GPx in the caudate nucleus suggests that increased oxidative stress in this brain region in OCD patients may contribute to impaired neuronal integration and functionality.
Collapse
Affiliation(s)
- Fatma Subaşı Turgut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mahmut Bulut
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Salih Hattapoğlu
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Güneş
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Cemal Kaya
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Faysal Ekici
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | | | - İbrahim Kaplan
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
2
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
3
|
Abstract
Obsessive-compulsive disorder (OCD) has a bidirectional relationship with metabolic disorders. The purposes of this review are to decipher the links between OCD and metabolic disorders and to explore the etiological mechanism of OCD in metabolism, which may aid in early identification of and tailored interventions for OCD and metabolic disorders.
Collapse
|
4
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
5
|
Correlations between facial emotion processing and biochemical abnormalities in untreated adolescent patients with major depressive disorder: A proton magnetic resonance spectroscopy study. J Affect Disord 2022; 296:408-417. [PMID: 34638025 DOI: 10.1016/j.jad.2021.08.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Studies show that disturbances of the fronto-striato-thalamic-cerebellar circuit could be correlated to facial emotion processing (FEP) biases in major depressive disorder (MDD). Nevertheless, the underlying mechanism of natural metabolism-emotion relationships in adolescent MDD remains unclear. METHODS Thirty-seven adolescent patients with MDD and 30 healthy controls completed FEP tasks using the Chinese Facial Affective Picture System (CAFPS). Proton magnetic resonance spectroscopy (1H-MRS) was also used to obtain ratios of N-acetylaspartate (NAA) /creatine (Cr) and choline (Cho) /Cr ratios in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), putamen, thalamus and cerebellum. Correlations between abnormal neurometabolic ratios and FEP were also computed. RESULTS Compared with the control group, the MDD group had significantly lower accuracy and perception intensity of happiness, and significantly higher accuracy of disgust and perception intensity of sad and fearful faces in FEP tasks. Compared to healthy controls, adolescent patients with MDD showed significantly lower NAA/Cr ratios in the left PFC, higher NAA/Cr ratios in the right thalamus, and higher Cho/Cr ratios in the right putamen, although there were no significant differences in metabolites in the ACC and cerebellum between two groups. In the MDD group, NAA/Cr ratios of the right thalamus were negatively correlated with happy reaction time and positively correlated with sad, anger, and fear intensity; Cho/Cr ratios in the right putamen were positively correlated with fear reaction time. CONCLUSIONS Our findings suggest that FEP bias may exist in adolescents with MDD, while the impairment of FEP may be associated with abnormal metabolites in the fronto-striato-thalamic circuit.
Collapse
|
6
|
Faulkner P, Paioni SL, Kozhuharova P, Orlov N, Lythgoe DJ, Daniju Y, Morgenroth E, Barker H, Allen P. Relationship between depression, prefrontal creatine and grey matter volume. J Psychopharmacol 2021; 35:1464-1472. [PMID: 34697970 PMCID: PMC8652356 DOI: 10.1177/02698811211050550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Depression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal grey matter volume. Because subclinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a subclinical level, may aid public health. METHODS Eighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural magnetic resonance imaging (MRI) to determine whole-brain grey matter volume. RESULTS/OUTCOMES DASS depression scores were negatively associated (a) with concentrations of creatine (but not other metabolites) in the prefrontal cortex and (b) with grey matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal grey matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain grey matter volume. CONCLUSIONS/INTERPRETATIONS This study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels that prefrontal creatine and grey matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings, which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and well-being.
Collapse
Affiliation(s)
- Paul Faulkner
- Department of Psychology, Whitelands College, University of Roehampton, London, UK
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | | | | | - Natasza Orlov
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Yusuf Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - Elenor Morgenroth
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Holly Barker
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
7
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2020; 224:117394. [PMID: 32987106 DOI: 10.1016/j.neuroimage.2020.117394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, there has been an increasing number of studies combining transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). MRS provides a manner to non-invasively investigate molecular concentrations in the living brain and thus identify metabolites involved in physiological and pathological processes. Particularly the MRS-detectable metabolites glutamate, the major excitatory neurotransmitter, and gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, are of interest when combining TMS and MRS. TMS is a non-invasive brain stimulation technique that can be applied either as a neuromodulation or neurostimulation tool, specifically targeting glutamatergic and GABAergic mechanisms. The combination of TMS and MRS can be used to evaluate alterations in brain metabolite levels following an interventional TMS protocol such as repetitive TMS (rTMS) or paired associative stimulation (PAS). MRS can also be combined with a variety of non-interventional TMS protocols to identify the interplay between brain metabolite levels and measures of excitability or receptor-mediated inhibition and facilitation. In this review, we provide an overview of studies performed in healthy and patient populations combining MRS and TMS, both as a measurement tool and as an intervention. TMS and MRS may reveal complementary and comprehensive information on glutamatergic and GABAergic neurotransmission. Potentially, connectivity changes and dedicated network interactions can be probed using the combined TMS-MRS approach. Considering the ongoing technical developments in both fields, combined studies hold future promise for investigations of brain network interactions and neurotransmission.
Collapse
Affiliation(s)
- Koen Cuypers
- Department of Movement Sciences, Group Biomedical Sciences, Movement Control & Neuroplasticity Research Group, KU Leuven, 3001 Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590 Diepenbeek, Belgium
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Kettegård Allé 30, 26500 Hvidovre, Denmark.
| |
Collapse
|
9
|
Lewis CP, Port JD, Blacker CJ, Sonmez AI, Seewoo BJ, Leffler JM, Frye MA, Croarkin PE. Altered anterior cingulate glutamatergic metabolism in depressed adolescents with current suicidal ideation. Transl Psychiatry 2020; 10:119. [PMID: 32327639 PMCID: PMC7181616 DOI: 10.1038/s41398-020-0792-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023] Open
Abstract
The anterior cingulate cortex (ACC) is involved in emotion regulation and salience processing. Prior research has implicated ACC dysfunction in suicidal ideation (SI) and suicidal behavior. This study aimed to quantify ACC glutamatergic concentrations and to examine relationships with SI in a sample of healthy and depressed adolescents. Forty adolescents underwent clinical evaluation and proton magnetic resonance spectroscopy (1H-MRS) at 3 T, utilizing a 2-dimensional J-averaged PRESS sequence sampling a medial pregenual ACC voxel. Cerebrospinal fluid-corrected ACC metabolite concentrations were compared between healthy control (HC, n = 16), depressed without SI (Dep/SI-, n = 13), and depressed with SI (Dep/SI+, n = 11) youth using general linear models covarying for age, sex, and psychotropic medication use. Relationships between ACC metabolites and continuous measures of SI were examined using multiple linear regressions. ROC analysis was used to determine the ability of glutamate+glutamine (Glx) and the N-acetylaspartate (NAA)/Glx ratio to discriminate Dep/SI- and Dep/SI+ adolescents. Dep/SI+ adolescents had higher Glx than Dep/SI- participants (padj = 0.012) and had lower NAA/Glx than both Dep/SI- (padj = 0.002) and HC adolescents (padj = 0.039). There were significant relationships between SI intensity and Glx (pFDR = 0.026), SI severity and NAA/Glx (pFDR = 0.012), and SI intensity and NAA/Glx (pFDR = 0.004). ACC Glx and NAA/Glx discriminated Dep/SI- from Dep/SI+ participants. Uncoupled NAA-glutamatergic metabolism in the ACC may play a role in suicidal ideation and behavior. Longitudinal studies are needed to establish whether aberrant glutamatergic metabolism corresponds to acute or chronic suicide risk. Glutamatergic biomarkers may be promising targets for novel risk assessment and interventional strategies for suicidal ideation and behavior.
Collapse
Affiliation(s)
- Charles P Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - A Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Research, Perth, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centres, University of Western Australia, Perth, WA, Australia
| | - Jarrod M Leffler
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Newman SD, Cheng H, Schnakenberg Martin A, Dydak U, Dharmadhikari S, Hetrick W, O’Donnell B. An Investigation of Neurochemical Changes in Chronic Cannabis Users. Front Hum Neurosci 2019; 13:318. [PMID: 31607877 PMCID: PMC6761299 DOI: 10.3389/fnhum.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023] Open
Abstract
With the legalization of recreational cannabis (CB) the characterization of how it may impact brain chemistry is essential. Magnetic resonance spectroscopy (MRS) was used to examine neurometabolite concentrations in the dorsal anterior cingulate (dACC) in chronic CB users (N = 26; 10 females) and controls (N = 24; 10 females). The concentrations of glutamate (Glu), total creatine (tCr), choline (Cho), total N-acetylaspartate (tNAA), and myo-inositol (mI) were estimated using LCModel. The ANCOVAs failed to show significant differences between controls and CB users. Regression analyses were then performed on the CB group to model each neurometabolite to determine its relationship to monthly CB use, sex, the interaction between CB use and sex. tCr was found to be predicted by both monthly CB use and sex. While the regression model was not significant the relationship between monthly CB use and Glu appears to be modulated by sex with the effect of monthly use (dose) being stronger in males. tNAA failed to show an effect of CB use but did reveal an effect of sex with females showing larger tNAA levels. Although the results presented are preliminary due to the small sample size they do guide future research. The results presented provide direction for further studies as they suggest that dose may significantly influence the observance of CB effects and that those effects may be modulated by sex. Studies with significantly larger sample sizes designed specifically to examine individuals with varying usage as well as sex effects are necessary.
Collapse
Affiliation(s)
- Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | | | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Brian O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
11
|
Kious BM, Kondo DG, Renshaw PF. Creatine for the Treatment of Depression. Biomolecules 2019; 9:E406. [PMID: 31450809 PMCID: PMC6769464 DOI: 10.3390/biom9090406] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Depressed mood, which can occur in the context of major depressive disorder, bipolar disorder, and other conditions, represents a serious threat to public health and wellness. Conventional treatments are not effective for a significant proportion of patients and interventions that are often beneficial for treatment-refractory depression are not widely available. There is, therefore, an immense need to identify novel antidepressant strategies, particularly strategies that target physiological pathways that are distinct from those addressed by conventional treatments. There is growing evidence from human neuroimaging, genetics, epidemiology, and animal studies that disruptions in brain energy production, storage, and utilization are implicated in the development and maintenance of depression. Creatine, a widely available nutritional supplement, has the potential to improve these disruptions in some patients, and early clinical trials indicate that it may have efficacy as an antidepressant agent.
Collapse
Affiliation(s)
- Brent M Kious
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Douglas G Kondo
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| | - Perry F Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA
- George E. Wahlen Veterans Affairs Medical Center, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
12
|
Parmar A, Sharan P, Khandelwal SK, Agarwal K, Sharma U, Jagannathan NR. Brain neurochemistry in unmedicated obsessive-compulsive disorder patients and effects of 12-week escitalopram treatment: 1 H-magnetic resonance spectroscopy study. Psychiatry Clin Neurosci 2019; 73:386-393. [PMID: 30973183 DOI: 10.1111/pcn.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
AIM The purpose of this study was to examine treatment-related neurochemical changes in 28 unmedicated obsessive-compulsive disorder (OCD) patients using 1 H-magnetic resonance spectroscopy (1 H-MRS). METHODS We included subjects diagnosed with OCD (n = 28), each with a total duration of illness of less than 5 years, as a study group and age- and sex-matched healthy controls (n = 26). The inclusion criteria for the OCD group were right-handed individuals aged 18 years or older who had not been on any specific treatment for OCD for the last at least 8 weeks and who had no other psychiatric comorbidity. A pre-post and case-control design was employed in which OCD patients underwent 1 H-MRS at baseline and 12 weeks after treatment with escitalopram (n = 21). Clinical assessment was carried out using a semi-structured pro forma Yale-Brown Obsessive Compulsive Scale and the World Health Organization Disability Assessment Scale 2.0 before and after treatment. Volume-localized 1 H-MRS was carried out with a 3-Tesla Philips MR scanner. RESULTS Our data suggested higher levels of myoinositol (mI), total choline (tCho), and glutamate+glutamine (Glx) in the medial thalamus at pre-assessment in OCD subjects as compared to healthy controls and a significant reduction in tCho and Glx after treatment in OCD subjects. The mI levels in the caudate nucleus and Glx levels in the anterior cingulate cortex were significantly correlated with disease severity on the Yale-Brown Obsessive Compulsive Scale. CONCLUSION Our study supports the hypothesis of a hyper-glutaminergic state (as suggested by increased Glx levels) and neurodegeneration (as suggested by increased tCho and mI in the thalamus) in cortico-striato-thalamocortical circuitry in OCD patients as suggested by previous studies using MRS as well as other functional imaging studies.
Collapse
Affiliation(s)
- Arpit Parmar
- National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Sharan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Khushbu Agarwal
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Sharma
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
13
|
Balestrino M, Adriano E. Beyond sports: Efficacy and safety of creatine supplementation in pathological or paraphysiological conditions of brain and muscle. Med Res Rev 2019; 39:2427-2459. [PMID: 31012130 DOI: 10.1002/med.21590] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Creatine is pivotal in energy metabolism of muscle and brain cells, both in physiological and in pathological conditions. Additionally, creatine facilitates the differentiation of muscle and neuronal cells. Evidence of effectiveness of creatine supplementation in improving several clinical conditions is now substantial, and we review it in this paper. In hereditary diseases where its synthesis is impaired, creatine has a disease-modifying capacity, especially when started soon after birth. Strong evidence, including a Cochrane meta-analysis, shows that it improves muscular strength and general well-being in muscular dystrophies. Significant evidence exists also of its effectiveness in secondary prevention of statin myopathy and of treatment-resistant depression in women. Vegetarians and vegans do not consume any dietary creatine and must synthesize all they need, spending most of their methylation capacity. Nevertheless, they have a lower muscular concentration of creatine. Creatine supplementation has proved effective in increasing muscular and neuropsychological performance in vegetarians or vegans and should, therefore, be recommended especially in those of them who are athletes, heavy-duty laborers or who undergo intense mental effort. Convincing evidence also exists of creatine effectiveness in muscular atrophy and sarcopenia in the elderly, and in brain energy shortage (mental fatigue, sleep deprivation, environmental hypoxia as in mountain climbing, and advanced age). Furthermore, we review more randomized, placebo-controlled trials showing that creatine supplementation is safe up to 20 g/d, with a possible caveat only in people with kidney disease. We trust that the evidence we review will be translated into clinical practice and will spur more research on these subjects.
Collapse
Affiliation(s)
- Maurizio Balestrino
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrico Adriano
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University of Genova, Genova, Italy
| |
Collapse
|
14
|
Wang R, Fan Q, Zhang Z, Chen Y, Zhu Y, Li Y. Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: A combined DTI-MRS study. Psychiatry Res Neuroimaging 2018; 277:39-44. [PMID: 29807209 DOI: 10.1016/j.pscychresns.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Numerous studies indicate the cortico-striato-thalamo-cortical (CSTC) circuit plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD). The anterior thalamic radiation (ATR), as a major fiber in the fronto-thalamic circuitry, contributes to symptomology of OCD. However, the underlying biochemical mechanism in relation with its structural alteration remains not understood. This study investigated the structural abnormality of ATR and its correlation with thalamic metabolic alteration in OCD, using diffusion tensor image (DTI) and proton magnetic resonance spectroscopy (1H-MRS). Twenty-six unmedicated adult OCD patients and twenty-six matched healthy controls participated in DTI study. Thirteen OCD patients and thirteen healthy controls, a subset of DTI participants, took part in MRS study. The results showed that mean fiber length of right ATR negatively correlated with ipsilateral thalamic choline (Cho) level in OCD patients. Additionally, significantly higher Cho concentration was detected in right thalamus of OCD patients compared to healthy controls. Moreover, the mean fractional anisotropy (FA) value of right ATR positively correlated with patients Yale-Brown Obsessive Compulsive Scale (YBOCS) total score, as well as YBOCS compulsion score. These results suggested the coupling of structural and metabolic changes in right ATR, which might serve as a multi-modal biomarker contributing to the pathogenesis of OCD.
Collapse
Affiliation(s)
- Ruilin Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China.
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yajing Zhu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
15
|
Hatchondo L, Jaafari N, Langbour N, Maillochaud S, Herpe G, Guillevin R, Guillevin C. 1H magnetic resonance spectroscopy suggests neural membrane alteration in specific regions involved in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2017; 269:48-53. [PMID: 28938221 DOI: 10.1016/j.pscychresns.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022]
Affiliation(s)
- Laura Hatchondo
- University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; Clinical Research Unit of Psychiatry - Henri Laborit Hospital, Poitiers, France; DACTIM-MIS team LMA/ CNRS 7348, Poitiers University, France.
| | - Nematollah Jaafari
- Clinical Research Unit of Psychiatry - Henri Laborit Hospital, Poitiers, France.
| | - Nicolas Langbour
- Clinical Research Unit of Psychiatry - Henri Laborit Hospital, Poitiers, France.
| | - Sylvie Maillochaud
- Clinical Research Unit of Psychiatry - Henri Laborit Hospital, Poitiers, France.
| | - Guillaume Herpe
- University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; Department of Medical Imaging - University Hospital of Poitiers, France; DACTIM-MIS team LMA/ CNRS 7348, Poitiers University, France.
| | - Rémy Guillevin
- University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; Department of Medical Imaging - University Hospital of Poitiers, France; DACTIM-MIS team LMA/ CNRS 7348, Poitiers University, France.
| | - Carole Guillevin
- University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France; Department of Medical Imaging - University Hospital of Poitiers, France; DACTIM-MIS team LMA/ CNRS 7348, Poitiers University, France.
| |
Collapse
|
16
|
Lewis CP, Port JD, Frye MA, Vande Voort JL, Ameis SH, Husain MM, Daskalakis ZJ, Croarkin PE. An Exploratory Study of Spectroscopic Glutamatergic Correlates of Cortical Excitability in Depressed Adolescents. Front Neural Circuits 2016; 10:98. [PMID: 27965544 PMCID: PMC5127083 DOI: 10.3389/fncir.2016.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022] Open
Abstract
Introduction: Transcranial magnetic stimulation (TMS) research has suggested dysfunction in cortical glutamatergic systems in adolescent depression, while proton magnetic resonance spectroscopy (1H-MRS) studies have demonstrated deficits in concentrations of glutamatergic metabolites in depressed individuals in several cortical regions, including the anterior cingulate cortex (ACC). However, few studies have combined TMS and MRS methods to examine relationships between glutamatergic neurochemistry and excitatory and inhibitory neural functions, and none have utilized TMS-MRS methodology in clinical populations or in youth. This exploratory study aimed to examine relationships between TMS measures of cortical excitability and inhibition and concentrations of glutamatergic metabolites as measured by 1H-MRS in depressed adolescents. Methods: Twenty-four adolescents (aged 11-18 years) with depressive symptoms underwent TMS testing, which included measures of the resting motor threshold (RMT), cortical silent period (CSP), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF). Fourteen participants from the same sample also completed 1H-MRS in a 3 T MRI scanner after TMS testing. Glutamate + glutamine (Glx) concentrations were measured in medial ACC and left primary motor cortex voxels with a TE-optimized PRESS sequence. Metabolite concentrations were corrected for cerebrospinal fluid (CSF) after tissue segmentation. Pearson product-moment and Spearman rank-order correlations were calculated to assess relationships between TMS measures and [Glx]. Results: In the left primary motor cortex voxel, [Glx] had a significant positive correlation with the RMT. In the medial ACC voxel, [Glx] had significant positive correlations with ICF at the 10-ms and 20-ms interstimulus intervals (ISIs). Conclusion: These preliminary data implicate glutamate in cortical excitatory processes measured by TMS. Limitations included small sample size, lack of healthy control comparators, possible age- and sex-related effects, and observational nature of the study. Further research aimed at examining the relationship between glutamatergic metabolite concentrations measured through MRS and the excitatory and inhibitory physiology measured through TMS is warranted. Combined TMS-MRS methods show promise for future investigations of the pathophysiology of depression in adults as well as in children and adolescents.
Collapse
Affiliation(s)
- Charles P Lewis
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - John D Port
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo ClinicRochester, MN, USA; Department of Radiology, Mayo ClinicRochester, MN, USA
| | - Mark A Frye
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Jennifer L Vande Voort
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Stephanie H Ameis
- Faculty of Medicine, Department of Psychiatry, University of TorontoToronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of TorontoToronto, ON, Canada; The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of TorontoToronto, ON, Canada
| | - Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical CenterDallas, TX, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of MedicineDurham, NC, USA
| | - Zafiris J Daskalakis
- Faculty of Medicine, Department of Psychiatry, University of TorontoToronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of TorontoToronto, ON, Canada
| | - Paul E Croarkin
- Mayo Clinic Depression Center, Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
17
|
Rackayova V, Cudalbu C, Pouwels PJW, Braissant O. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies. Anal Biochem 2016; 529:144-157. [PMID: 27840053 DOI: 10.1016/j.ab.2016.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1H MRS allows the measurement of Cr and PCr, and how 31P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients.
Collapse
Affiliation(s)
- Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petra J W Pouwels
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| | - Olivier Braissant
- Service of Biomedicine, Neurometabolic Unit, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
18
|
O'Neill J, Lai TM, Sheen C, Salgari GC, Ly R, Armstrong C, Chang S, Levitt JG, Salamon N, Alger JR, Feusner JD. Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Res 2016; 254:34-40. [PMID: 27317876 PMCID: PMC5780184 DOI: 10.1016/j.pscychresns.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/28/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Focal brain metabolic effects detected by proton magnetic resonance spectroscopy (MRS) in obsessive-compulsive disorder (OCD) represent prospective indices of clinical status and guides to treatment design. Sampling bilateral pregenual anterior cingulate cortex (pACC), anterior middle cingulate cortex (aMCC), and thalamus in 40 adult patients and 16 healthy controls, we examined relationships of the neurometabolites glutamate+glutamine (Glx), creatine+phosphocreatine (Cr), and choline-compounds (Cho) with OCD diagnosis and multiple symptom types. The latter included OC core symptoms (Yale-Brown Obsessive-Compulsive Scale - YBOCS), depressive symptoms (Montgomery-Åsberg Depression Rating Scale - MADRS), and general functioning (Global Assessment Scale - GAS). pACC Glx was 9.7% higher in patients than controls. Within patients, Cr and Cho correlated negatively with YBOCS and MADRS, while Cr correlated positively with the GAS. In aMCC, Cr and Cho correlated negatively with MADRS, while Cr in thalamus correlated positively with GAS. These findings present moderate support for glutamatergic and cingulocentric perspectives on OCD. Based on our prior metabolic model of OCD, we offer one possible interpretation of these group and correlational effects as consequences of a corticothalamic state of elevated glutamatergic receptor activity alongside below-normal glutamatergic transporter activity.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States.
| | - Tsz M Lai
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Courtney Sheen
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Giulia C Salgari
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Ronald Ly
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Casey Armstrong
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Susanna Chang
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Jennifer G Levitt
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| | - Noriko Salamon
- UCLA Department of Radiological Sciences, Los Angeles, CA, United States
| | - Jeffry R Alger
- UCLA Department of Radiological Sciences, Los Angeles, CA, United States; UCLA Department of Neurology, Los Angeles, CA, United States
| | - Jamie D Feusner
- Division of Adult Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, United States
| |
Collapse
|
19
|
Ortiz AE, Gassó P, Mas S, Falcon C, Bargalló N, Lafuente A, Lázaro L. Association between genetic variants of serotonergic and glutamatergic pathways and the concentration of neurometabolites of the anterior cingulate cortex in paediatric patients with obsessive-compulsive disorder. World J Biol Psychiatry 2016; 17:394-404. [PMID: 26505676 DOI: 10.3109/15622975.2015.1111524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present study aimed to assess the relationship between variability in genes related to the pathophysiology of obsessive-compulsive disorder (OCD) and the concentration of different neurometabolites in the anterior cingulate cortex (ACC). METHODS We concomitantly assessed neurometabolite concentrations using 3-T (1)H-MRS and 262 single nucleotide polymorphism (SNPs) in 35 genes in 41 paediatric OCD patients. RESULTS There were significant associations, after Bonferroni correction, between the concentration of inositol, glutamate and glutamine, and total choline and five polymorphisms located in genes related to serotonin and glutamate (i.e., the vesicular monoamine transporter 1 gene, SLC18A1 [rs6586896]; the serotonin receptor 1B gene, HTR1B [rs6296 and rs6298]; and the glutamate receptor, ionotropic, AMPA1 gene, GRIA1 [rs707176 and rs2963944]). CONCLUSIONS The association observed between these polymorphisms and the neurometabolite concentrations could indicate the presence of a biological interaction between the serotonin and the glutamate pathways that could be involved in the pathophysiology of OCD. More studies with this methodology could increase our understanding of the aetiology and pathophysiology of OCD in children.
Collapse
Affiliation(s)
- Ana E Ortiz
- a Department of Child and Adolescent Psychiatry and Psychology , Institute of Neurosciences, Hospital Clínic , Barcelona , Spain
| | - Patricia Gassó
- b Department Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona, Barcelona , Spain ;,f Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Sergi Mas
- b Department Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona, Barcelona , Spain ;,f Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain ;,g Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Spain
| | | | - Nuria Bargalló
- c Magnetic Resonance Image Core Facility. IDIBAPS (Institut D'investigacions Biomèdiques August Pi I Sunyer) , Barcelona , Spain ;,d Image Diagnostic Center, Hospital Clínic , Barcelona , Spain ;,g Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Spain
| | - Amalia Lafuente
- b Department Anatomic Pathology, Pharmacology and Microbiology , University of Barcelona, Barcelona , Spain ;,f Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain ;,g Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Spain
| | - Luisa Lázaro
- a Department of Child and Adolescent Psychiatry and Psychology , Institute of Neurosciences, Hospital Clínic , Barcelona , Spain ;,e Department Psychiatry and Clinical Psychobiology , University of Barcelona , Barcelona , Spain ;,f Institut D'investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain ;,g Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM) , Spain
| |
Collapse
|
20
|
Zhu Y, Fan Q, Han X, Zhang H, Chen J, Wang Z, Zhang Z, Tan L, Xiao Z, Tong S, Maletic-Savatic M, Li Y. Decreased thalamic glutamate level in unmedicated adult obsessive-compulsive disorder patients detected by proton magnetic resonance spectroscopy. J Affect Disord 2015; 178:193-200. [PMID: 25819113 DOI: 10.1016/j.jad.2015.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Previous neuroimaging studies implied that the dysfunction of cortico-striato-thalamo-cortical (CSTC) circuit served as the neural basis for the pathophysiology of obsessive-compulsive disorder (OCD). The imbalances in neuronal metabolite and neurotransmitter within CSTC circuit have been shown as the leading reasons of the OCD onset. The aim of this study is to investigate the metabolic alterations, especially the glutamatergic signal dysfunction within CSTC circuit, and the relationships between neural metabolites and the symptom severity of OCD patients. METHODS Single voxel magnetic resonance spectroscopy (MRS) was conducted in medial prefrontal cortex (mPFC) and bilateral thalamus areas for thirteen unmedicated adult OCD patients with age-, gender-, and education-matched healthy controls. Quantification and multivariate analysis were performed to identify vital metabolic biomarkers for patients and healthy controls group differentiation. Moreover, we performed Spearman׳s rank correlation analysis for OCD patients to examine the relationship between the metabolite concentration level and OCD symptomatology. RESULTS Patients with OCD showed significantly decreased glutamate level in mPFC (p=0.021) and right thalamus (p=0.039), and significantly increased choline compounds in left thalamus (p=0.044).The glutamate in right thalamus was shown as the most important metabolite for group separation from multivariate analysis (Q(2)=0.134) and was significantly correlated with the patients׳ compulsion scores (Spearman r=-0.674, p=0.016). LIMITATIONS Limited sample size, the use of creatine and phosphocreatine (Cr) ratios rather than absolute concentrations and unresolved glutamine (Gln) are limitations of the present study. CONCLUSION Our study results consolidated the hypothesis about glutamatergic signaling dysfunction in OCD. To our knowledge, it is the first finding about a reduced thalamic glutamate level in adult unmedicated OCD patients. The dysregulation of glutamate serves as a potential target for the OCD pharmacotherapy and the detailed mechanisms underlying the glutamate alterations within CSTC circuits merit further investigations.
Collapse
Affiliation(s)
- Yajing Zhu
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai 200030, China; School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Xu Han
- Departments of Pediatrics, Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children׳s Hospital, Houston, TX 77030, USA
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ling Tan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shanbao Tong
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai 200030, China; School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Mirjana Maletic-Savatic
- Departments of Pediatrics, Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children׳s Hospital, Houston, TX 77030, USA
| | - Yao Li
- Med-X Research Institute, Shanghai Jiaotong University, Shanghai 200030, China; School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: A review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2015; 52:74-88. [DOI: 10.1016/j.neubiorev.2015.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/20/2014] [Accepted: 02/13/2015] [Indexed: 11/29/2022]
|
22
|
Synthesis of novel binary and ternary Zn2+ complexes with putrescine and phosphocreatine and the metal complexes study in aqueous solution. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.05.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Neurochemicals measured by 1H-MR spectroscopy: putative vulnerability biomarkers for obsessive compulsive disorder. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 27:407-17. [DOI: 10.1007/s10334-013-0427-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 11/26/2022]
|
24
|
Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive-compulsive disorder. J Psychiatr Res 2013; 47:494-504. [PMID: 23290560 PMCID: PMC3672238 DOI: 10.1016/j.jpsychires.2012.11.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 11/23/2022]
Abstract
The neurophysiological bases of cognitive-behavioral therapy (CBT) for obsessive-compulsive disorder (OCD) are incompletely understood. Previous studies, though sparse, implicate metabolic changes in pregenual anterior cingulate cortex (pACC) and anterior middle cingulate cortex (aMCC) as neural correlates of response to CBT. The goal of this pilot study was to determine the relationship between levels of the neurochemically interlinked metabolites glutamate + glutamine (Glx) and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) in pACC and aMCC to pretreatment OCD diagnostic status and OCD response to CBT. Proton magnetic resonance spectroscopic imaging ((1)H MRSI) was acquired from pACC and aMCC in 10 OCD patients at baseline, 8 of whom had a repeat scan after 4 weeks of intensive CBT. pACC was also scanned (baseline only) in 8 age-matched healthy controls. OCD symptoms improved markedly in 8/8 patients after CBT. In right pACC, tNAA was significantly lower in OCD patients than controls at baseline and then increased significantly after CBT. Baseline tNAA also correlated with post-CBT change in OCD symptom severity. In left aMCC, Glx decreased significantly after intensive CBT. These findings add to evidence implicating the pACC and aMCC as loci of the metabolic effects of CBT in OCD, particularly effects on glutamatergic and N-acetyl compounds. Moreover, these metabolic responses occurred after just 4 weeks of intensive CBT, compared to 3 months for standard weekly CBT. Baseline levels of tNAA in the pACC may be associated with response to CBT for OCD. Lateralization of metabolite effects of CBT, previously observed in subcortical nuclei and white matter, may also occur in cingulate cortex. Tentative mechanisms for these effects are discussed. Comorbid depressive symptoms in OCD patients may have contributed to metabolite effects, although baseline and post-CBT change in depression ratings varied with choline-compounds and myo-inositol rather than Glx or tNAA.
Collapse
|
25
|
Brennan BP, Rauch SL, Jensen JE, Pope HG. A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry 2013; 73:24-31. [PMID: 22831979 PMCID: PMC3504626 DOI: 10.1016/j.biopsych.2012.06.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023]
Abstract
Functional neuroimaging studies have converged to suggest that cortico-striatal-thalamo-cortical (CSTC) circuit dysfunction is a core pathophysiologic feature of obsessive-compulsive disorder (OCD). Now, complementary approaches examining regional neurochemistry are beginning to yield additional insights with regard to the neurobiology of aberrant CSTC circuitry in OCD. In particular, proton magnetic resonance spectroscopy, which allows for the in vivo quantification of various neurochemicals in the CSTC circuit and other brain regions, has recently been used extensively in studies of OCD patients. In this review, we summarize the diverse and often seemingly inconsistent findings of these studies, consider methodological factors that might help to explain these inconsistencies, and discuss several convergent findings that tentatively seem to be emerging. We conclude with suggestions for possible future proton magnetic resonance spectroscopy studies in OCD.
Collapse
Affiliation(s)
- Brian P Brennan
- Biological Psychiatry Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
26
|
Aoki Y, Aoki A, Suwa H. Reduction of N-acetylaspartate in the medial prefrontal cortex correlated with symptom severity in obsessive-compulsive disorder: meta-analyses of (1)H-MRS studies. Transl Psychiatry 2012; 2:e153. [PMID: 22892718 PMCID: PMC3432192 DOI: 10.1038/tp.2012.78] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/09/2012] [Accepted: 07/14/2012] [Indexed: 11/09/2022] Open
Abstract
Structural and functional neuroimaging findings suggest that disturbance of the cortico-striato-thalamo-cortical (CSTC) circuits may underlie obsessive-compulsive disorder (OCD). However, some studies with (1)H-magnetic resonance spectroscopy ((1)H-MRS) reported altered level of N-acetylaspartate (NAA), they yielded inconsistency in direction and location of abnormality within CSTC circuits. We conducted a comprehensive literature search and a meta-analysis of (1)H-MRS studies in OCD. Seventeen met the inclusion criteria for a meta-analysis. Data were separated by frontal cortex region: medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex, orbitofrontal cortex, basal ganglia and thalamus. The mean and s.d. of the NAA measure were calculated for each region. A random effects model integrating 16 separate datasets with 225 OCD patients and 233 healthy comparison subjects demonstrated that OCD patients exhibit decreased NAA levels in the frontal cortex (P=0.025), but no significant changes in the basal ganglia (P=0.770) or thalamus (P=0.466). Sensitivity analysis in an anatomically specified subgroup consisting of datasets examining the mPFC demonstrated marginally significant reduction of NAA (P=0.061). Meta-regression revealed that NAA reduction in the mPFC was positively correlated with symptom severity measured by Yale-Brown Obsessive Compulsive Scale (P=0.011). The specific reduction of NAA in the mPFC and significant relationship between neurochemical alteration in the mPFC and symptom severity indicate that the mPFC is one of the brain regions that directly related to abnormal behavior in the pathophysiology of OCD. The current meta-analysis indicates that cortices and sub-cortices contribute in different ways to the etiology of OCD.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Psychiatry, Tokyo Metropolitan Health and Medical Treatment Corporation, Ebara Hospital, Ota, Tokyo, Japan.
| | | | | |
Collapse
|
27
|
Allen PJ. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 2012; 36:1442-62. [PMID: 22465051 PMCID: PMC3340488 DOI: 10.1016/j.neubiorev.2012.03.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington's Disease and Parkinson's Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies.
Collapse
Affiliation(s)
- Patricia J Allen
- Department of Psychology, Tufts University, Psychology Building, 490 Boston Ave., Medford, MA 02155, USA.
| |
Collapse
|
28
|
Husarova V, Bittsansky M, Ondrejka I, Kerna V, Dobrota D. Hippocampal neurometabolite changes in depression treatment: a (1)H magnetic resonance spectroscopy study. Psychiatry Res 2012; 201:206-13. [PMID: 22507761 DOI: 10.1016/j.pscychresns.2011.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/31/2011] [Accepted: 07/10/2011] [Indexed: 01/08/2023]
Abstract
Previous studies using magnetic resonance spectroscopy have related abnormalities in hippocampal metabolism to depression. Current evidence is consistent with the conclusion that the hippocampal formation plays an important role in the presentation of depressive symptoms. Eighteen adult patients with major depressive disorder, aged 20 to 60 years, underwent magnetic resonance spectroscopy of the hippocampus during a period of depressive symptomatology and after 7-11 weeks of antidepressant medication with at least 50% reduction in the Montgomery-Åsberg Depression Rating Scale ()MADRS score. During therapy, we found a significantly decreased Lac/Cr ratio in the left hippocampus. The Ins/Cr ratio showed a significant negative correlation with the severity of depression as assessed by the MADRS at baseline. Moreover, we found a negative association of NAA/Cho with age and a positive association of Cho/Cr with age, both on the left and right sides at baseline. In light of our findings and previous studies results we hypothesize that mitochondrial dysfunction leading to predominantly anaerobic glycolysis in connection with the intracellular signaling pathways disturbances and decreased astrocytic function/number might subsequently lead to decreased brain neuroplasticity in depression. These mechanisms could be positively influenced by antidepressant treatment with selective serotonin or norepineprine reuptake inhibitors, with potential effects on untimely neuronal aging in depression.
Collapse
|
29
|
Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav 2012; 101:588-601. [PMID: 22429992 DOI: 10.1016/j.pbb.2012.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 12/14/2022]
Abstract
The potential role of metabolic impairments in the pathophysiology of depression is motivating researchers to evaluate the treatment efficacy of creatine, a naturally occurring energetic and neuroprotective compound found in brain and muscle tissues. Growing evidence is demonstrating the benefit of oral creatine supplements for reducing depressive symptoms in humans and animals. A novel question is whether dietary creatine, when combined with antidepressant drug therapy, would be more effective than either compound alone. To answer this question, four studies were conducted to investigate the behavioral effects of combined creatine and low-dose fluoxetine treatment using the forced swim test in male and female rats. Sprague-Dawley rats were fed powdered rodent chow supplemented with 0%, 2% or 4% w/w creatine monohydrate for 5 weeks. Rats were injected with fluoxetine (5.0 or 10.0 mg/kg) or saline according to a sub-acute dosing schedule. Female rats maintained on a 4% creatine diet displayed antidepressant-like effects compared to non-supplemented females prior to fluoxetine treatment. In contrast, creatine did not alter behavior reliably in males. Following drug treatment and a second forced swim trial, the antidepressant-like profile of creatine remained significant only in females co-administered 5.0 mg/kg fluoxetine. Moreover, in females only, supplementation with 4% creatine produced a more robust antidepressant-like behavioral profile compared to either dose of fluoxetine alone. Estrous cycle data indicated that ovarian hormones influenced the antidepressant-like effects of creatine. Addressing the issue of sex differences in response to treatment may affect our understanding of creatine, its relationship with depressive behavior, and may lead to sex-specific therapeutic strategies.
Collapse
|
30
|
Lázaro L, Bargalló N, Andrés S, Falcón C, Morer A, Junqué C, Castro-Fornieles J. Proton magnetic resonance spectroscopy in pediatric obsessive-compulsive disorder: longitudinal study before and after treatment. Psychiatry Res 2012; 201:17-24. [PMID: 22281202 DOI: 10.1016/j.pscychresns.2011.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/22/2011] [Accepted: 01/27/2011] [Indexed: 11/18/2022]
Abstract
Abnormalities in neurochemical compounds in obsessive-compulsive disorder (OCD) may help increase our knowledge of neurobiological abnormalities in the fronto-subcortical circuits. The aims of this exploratory study were to identify with in vivo magnetic resonance spectroscopy ((1)H-MRS) the possible alterations in neurometabolites in a group of drug naïve children and adolescents with OCD in comparison with a control group and to determine whether there was any effect of treatment on the metabolite levels. Eleven OCD children and adolescents (age range 9-17 years; 6 male, 5 female) and twelve healthy subjects with similar age, sex and estimated intellectual quotient were studied. Proton magnetic resonance spectroscopy at 1.5 T was used. We placed 3 voxels, one bilaterally located involving anterior cingulate-medial frontal regions, and one in each striatal region involving the caudate and putaminal regions. Concentrations of creatine (Cr), myo-inositol (mI), total Cho (glycerophosphocholine+phosphocholine), total NAA (N-acetyl aspartate+N-acetyl aspartylglutamate), and total Glx (glutamate+glutamine) were calculated. We found significantly lower concentrations of total Cho in left striatum in OCD patients compared with healthy subjects. The difference in Cho concentrations in left striatum between the two groups did not change over time and persisted at follow-up assessment. Like the control subjects, OCD patients undergoing pharmacological treatment and clinical recovery showed no significant changes in neurometabolic activity between the first and second evaluations.
Collapse
Affiliation(s)
- Luisa Lázaro
- Child and Adolescent Psychiatry and Psychology Department, Universitari of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
31
|
O'Neill J, Piacentini JC, Chang S, Levitt JG, Rozenman M, Bergman L, Salamon N, Alger JR, McCracken JT. MRSI correlates of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:161-8. [PMID: 21983143 PMCID: PMC4344316 DOI: 10.1016/j.pnpbp.2011.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND The brain mechanisms of cognitive-behavioral therapy (CBT), a highly effective treatment for pediatric obsessive-compulsive disorder (OCD), are unknown. Neuroimaging in adult OCD indicates that CBT is associated with metabolic changes in striatum, thalamus, and anterior cingulate cortex. We therefore probed putative metabolic effects of CBT on these brain structures in pediatric OCD using proton magnetic resonance spectroscopic imaging (1H MRSI). METHOD Five unmedicated OCD patients (4 ♀, 13.5±2.8) and 9 healthy controls (7 ♀, 13.0±2.5) underwent MRSI (1.5 T, repetition-time/echo-time=1500/30 ms) of bilateral putamen, thalamus and pregenual anterior cingulate cortex (pACC). Patients were rescanned after 12 weeks of exposure-based CBT. The Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) of OCD symptoms was administered before and after CBT. RESULTS Four of 5 patients responded to CBT (mean 32.8% CY-BOCS reduction). Multiple metabolite effects emerged. Pre-CBT, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (tNAA) in left pregenual anterior cingulate cortex (pACC) was 55.5% higher in patients than controls. Post-CBT, tNAA (15.0%) and Cr (23.9%) in left pACC decreased and choline compounds (Cho) in right thalamus increased (10.6%) in all 5 patients. In left thalamus, lower pre-CBT tNAA, glutamate+glutamine (Glx), and myo-inositol (mI) predicted greater post-CBT drop in CY-BOCS (r=0.98) and CY-BOCS decrease correlated with increased Cho. CONCLUSIONS Interpretations are offered in terms of the Glutamatergic Hypothesis of Pediatric OCD. Similar to 18FDG-PET in adults, objectively measurable regional MRSI metabolites may indicate pediatric OCD and predict its response to CBT.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, Department of Radiological Sciences, UCLA School of Medicine, Los Angeles, CA 90024-1759, United States.
| | - John C. Piacentini
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Susanna Chang
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Jennifer G. Levitt
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Michelle Rozenman
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Lindsey Bergman
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences, UCLA School of Medicine, Los Angeles, California
| | - Jeffry R. Alger
- Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - James T. McCracken
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
32
|
Szyfman NW, Loureiro NP, Tenório T, Mercê AL, Mangrich AS, Rey NA, Felcman J. Study of copper(II) ternary complexes with phosphocreatine and some polyamines in aqueous solution. J Inorg Biochem 2011; 105:1712-9. [DOI: 10.1016/j.jinorgbio.2011.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 11/16/2022]
|
33
|
Besiroglu L, Sozen M, Ozbebit O, Avcu S, Selvi Y, Bora A, Atli A, Unal O, Bulut MD. The involvement of distinct neural systems in patients with obsessive-compulsive disorder with autogenous and reactive obsessions. Acta Psychiatr Scand 2011; 124:141-51. [PMID: 21627621 DOI: 10.1111/j.1600-0447.2011.01726.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the regional metabolite abnormalities and changes after treatment in patients with OCD with autogenous and reactive obsessions. METHOD We assessed right anterior cingulate cortex (ACC) and amygdala-hippocampal region (Am + Hpp) N-acetyl-aspartate (NAA), choline (Cho) and creatine (Cr) concentrations and NAA/Cr and Cho/Cr ratios using single-voxel proton magnetic resonance spectroscopy in 15 patients with autogenous obsessions (OCD-A), 15 patients with reactive obsessions (OCD-R) and 15 healthy controls (HC). Measurements were repeated after 16 weeks of fluoxetine treatment. RESULTS Baseline ACC NAA/Cr ratios of both OCD groups were significantly lower than HC. OCD-A group had significantly lower baseline NAA/Cr ratios in the Am + Hpp than other groups. These differences were more likely to be explained by higher Cr levels in ACC. We found no significant differences and changes for Cho levels and Cho/Cr ratios between groups and within groups. Significant increase in NAA/Cr ratios of OCD-A group found in the Am + Hpp was more likely to be explained by increased NAA levels. No significant changes were found in ACC NAA/Cr ratios. CONCLUSION While disturbed energy metabolism in ACC might reflect a common pathology in patients with OCD regardless of symptom dimension, alterations in mesiotemporal lobe are more likely for autogenous obsessions.
Collapse
Affiliation(s)
- L Besiroglu
- Department of Psychiatry, Yuzuncu Yil University, Van, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fallucca E, MacMaster FP, Haddad J, Easter P, Dick R, May G, Stanley JA, Rix C, Rosenberg DR. Distinguishing between major depressive disorder and obsessive-compulsive disorder in children by measuring regional cortical thickness. ACTA ACUST UNITED AC 2011; 68:527-33. [PMID: 21536980 DOI: 10.1001/archgenpsychiatry.2011.36] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Cortical abnormalities have been noted in previous studies of major depressive disorder (MDD). OBJECTIVE To hypothesize differences in regional cortical thickness among children with MDD, children with obsessive-compulsive disorder (OCD), and healthy controls. DESIGN Cross-sectional study of groups. SETTING Children's Hospital of Michigan in Detroit. PARTICIPANTS A total of 24 psychotropic drug-naive pediatric patients with MDD (9 boys and 15 girls), 24 psychotropic drug-naive pediatric outpatients with OCD (8 boys and 16 girls), and 30 healthy controls (10 boys and 20 girls). INTERVENTION Magnetic resonance imaging. MAIN OUTCOME MEASURE Cortical thickness. RESULTS In the right hemisphere of the brain, the pericalcarine gyrus was thinner in patients with MDD than in outpatients with OCD (P = .002) or healthy controls (P = .04), the postcentral gyrus was thinner in patients with MDD than in outpatients with OCD (P = .002) or healthy controls (P = .02), and the superior parietal gyrus was thinner in patients with MDD than in outpatients with OCD (P = .008) or healthy controls (P = .03). The outpatients with OCD and the healthy controls did not differ in these regions of the brain. The temporal pole was thicker in patients with MDD than in outpatients with OCD (P < .001) or healthy controls (P = .01), both of which groups did not differ in temporal pole thickness. The cuneus was thinner in patients with MDD than in outpatients with OCD (P = .008), but it did not differ from that in healthy controls. In the left hemisphere, the supramarginal gyrus was thinner in both patients with MDD (P = .04) and outpatients with OCD (P = .01) than in healthy controls, and the temporal pole was thicker in patients with MDD than in both healthy controls and outpatients with OCD (P < .001). CONCLUSIONS To our knowledge, this is the first study to explore cortical thickness in pediatric patients with MDD. Although differences in some regions of the brain would be expected given neurobiological models of MDD, our study highlights some unexpected regions (ie, supramarginal and superior parietal gyri) that merit further investigation. These results underscore the need to expand exploration beyond the frontal-limbic circuit.
Collapse
Affiliation(s)
- Erin Fallucca
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, and Children’s Hospital of Michigan, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Atmaca M, Yildirim H, Koc M, Korkmaz S, Ozler S, Erenkus Z. Do defense styles of ego relate to volumes of orbito-frontal cortex in patients with obsessive-compulsive disorder? Psychiatry Investig 2011; 8:123-9. [PMID: 21852988 PMCID: PMC3149106 DOI: 10.4306/pi.2011.8.2.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/29/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Although the importance of orbito-frontal cortex (OFC) is established in the pathogenesis of obsessive compulsive disorder (OCD), no study have evaluated its relation to the traditional psychodynamic perspective. In the present study, we aimed to evaluate the relationship between the defense styles consisting of mature, immature and neurotic defenses and OFC volumes of patients with OCD. METHODS Subjects were selected among those of our previous study, and so eighteen patients with OCD and same number of healthy controls were took into the study. The patients and controls had underwent magnetic resonance imaging (MRI). In addition, the Defense Style Questionnaire-40 was administered to obtain defense styles of patients and controls. RESULTS No significant relationship was found between the right OFC volumes of both the patient and control groups and their scores of mature, neurotic, or immature defense mechanisms. As for the left OFC volumes, the only significant relationship for the scores of immature defense mechanism was found in the patient group. CONCLUSION The results of the present study indicated that there was no significant relationship between OFC volumes of the patient group and their scores of mature, neurotic, or immature defense mechanisms, except a significant relation with the scores of immature defense mechanisms.
Collapse
Affiliation(s)
- Murad Atmaca
- Department of Psychiatry, School of Medicine, Firat University, Elazig, Turkey
| | - Hanefi Yildirim
- Department of Radiology, School of Medicine, Firat University, Elazig, Turkey
| | - Mustafa Koc
- Department of Radiology, School of Medicine, Firat University, Elazig, Turkey
| | - Sevda Korkmaz
- Department of Psychiatry, School of Medicine, Firat University, Elazig, Turkey
| | - Sinan Ozler
- Department of Psychiatry, School of Medicine, Firat University, Elazig, Turkey
| | - Zehra Erenkus
- Department of Biostatistics, School of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
Olvera RL, Caetano SC, Stanley JA, Chen HH, Nicoletti M, Hatch JP, Fonseca M, Pliszka SR, Soares JC. Reduced medial prefrontal N-acetyl-aspartate levels in pediatric major depressive disorder: a multi-voxel in vivo(1)H spectroscopy study. Psychiatry Res 2010; 184:71-6. [PMID: 20864319 PMCID: PMC2963721 DOI: 10.1016/j.pscychresns.2010.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 05/10/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
There is increasing evidence of a reciprocal fronto-limbic network in the pathogenesis of mood disorders. Prior in vivo proton ((1)H) spectroscopy studies provide evidence of abnormal neurochemical levels in the cingulate and dorsolateral prefrontal cortex (DLPFC) of adult subjects with major depressive disorder (MDD). We examined whether similar abnormalities occur in children and adolescents with MDD. We collected two-dimensional multi-voxel in vivo (1)H spectroscopy data at 1.5 Tesla to quantify levels of N-acetyl-aspartate (NAA), glycerolphosphocholine plus phosphocholine (GPC+PC), and phosphocreatine plus creatine (PCr+Cr) in the DLPFC, medial prefrontal cortex (MPFC), and anterior cingulate (AC) of children and adolescents aged 8-17 years with MDD (n=16) compared with healthy control subjects (n=38). Analysis of covariance with age and gender as covariates was performed. MDD subjects showed significantly lower levels of NAA in the right MPFC and right AC than controls. MDD subjects also had significantly lower levels of GPC+PC in the right AC than control subjects. There were no significant differences in other metabolites in the studied regions. Pediatric patients with MDD exhibit neurochemical alterations in prefrontal cortex regions that are important in the monitoring and regulation of emotional states.
Collapse
Affiliation(s)
- Rene Luis Olvera
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro KK, Shi X, Renshaw PF. Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. DEPRESSION RESEARCH AND TREATMENT 2010; 2011:650450. [PMID: 21197097 PMCID: PMC3003951 DOI: 10.1155/2011/650450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Collapse
Affiliation(s)
- Douglas G. Kondo
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Tracy L. Hellem
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Young-Hoon Sung
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Namkug Kim
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Kristen K. DelMastro
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Xianfeng Shi
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Perry F. Renshaw
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| |
Collapse
|
38
|
Fan Q, Tan L, You C, Wang J, Ross CA, Wang X, Zhang T, Li J, Chen K, Xiao Z. Increased N-Acetylaspartate/creatine ratio in the medial prefrontal cortex among unmedicated obsessive-compulsive disorder patients. Psychiatry Clin Neurosci 2010; 64:483-90. [PMID: 20923427 DOI: 10.1111/j.1440-1819.2010.02128.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Changes in the fronto-striato-thalamo-cortical-circuit loop have been suggested in the pathogenesis of obsessive-compulsive disorder (OCD), and have been studied using (1)H magnetic resonance spectroscopy ((1)H MRS) with interesting findings. However, whether neural metabolites are abnormal in the medial prefrontal cortex in patients with OCD is unknown. The purpose of the present study was to investigate neural metabolites in this brain region in a sample of patients with OCD. METHODS Subjects were 21 unmedicated OCD patients, including 10 who were drug-naïve, and 19 healthy controls. Single-voxel (1)H MRS was used to study the medial prefrontal cortex for each subject. Levels of N-acetylaspartate (NAA), choline-containing compounds and myoinositol were measured in terms of their ratios with creatine (Cr). RESULTS The NAA/Cr ratio was significantly higher among OCD patients than among healthy controls (F = 4.76, P = 0.037). However, it did not correlate with patients' symptoms or with their illness durations. The NAA/Cr ratio also did not differ between drug-naïve and previously medicated patients. No significant group differences were found between OCD patients and normal controls for the choline-containing compounds/Cr or myoinositol/Cr ratios. In addition, a significant correlation between the NAA/Cr ratio and trait anxiety scores on the State-Trait Anxiety Inventory was found among the controls (r = 0.639, P = 0.010). CONCLUSIONS The N-Acetylaspartate level relative to creatine in the medial prefrontal cortex was increased among unmedicated OCD patients. This cannot be attributed to the effect of medications. The possible significance of this finding in the pathophysiology of OCD is discussed.
Collapse
Affiliation(s)
- Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
MacMaster FP. Translational neuroimaging research in pediatric obsessive-compulsive disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20623921 PMCID: PMC3181954 DOI: 10.31887/dcns.2010.12.2/fmacmaster] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a significant public health problem. Selective serotonin reuptake inhibitors (SSRIs) are the only FDA-approved medications for OCD. However, SSRIs are of limited efficacy in clinical practice. Given the persistence of symptoms and levels of treatment response, it is clear that the serotonin paradigm of OCD does not fully account for the neurobiology of the disorder, and that further translational research is needed. In this review, the glutamate hypothesis of pediatric OCD is explored, the neuroimaging evidence reviewed, and the translational impact highlighted. The traditional strategy of going from pharmacology to pathophysiology has failed to show real progress in our understanding of the neurobiology of psychiatric illness and, while still in the early stages, this work demonstrates the clear benefit of approaching psychiatric illness from the opposite direction.
Collapse
Affiliation(s)
- Frank P MacMaster
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
40
|
Effects of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: a study using (1)H magnetic resonance spectroscopy. Psychiatry Res 2010; 182:48-52. [PMID: 20227856 DOI: 10.1016/j.pscychresns.2009.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/14/2009] [Accepted: 11/22/2009] [Indexed: 11/23/2022]
Abstract
Previous studies in patients with a major depressive disorder show functional abnormalities in the medial frontal cortex. Functional and structural abnormalities in patients with post-stroke depression (PSD) are not well studied. The major goals of this study were to determine the biochemical abnormalities that occur in PSD and to assess the effect of antidepressants in patients with PSD at the biochemical level. We used magnetic resonance imaging to detect structural or functional abnormalities in PSD patients. In a prospective study, we included 30 patients with PSD and 20 age-matched subjects as controls. Magnetic resonance spectroscopy (MRS) of the brain was conducted in all subjects at the beginning of the study. Patients with PSD were treated with the antidepressant paroxetine (20-40mg/days) for 6 months. After the 6-month period, all PSD subjects underwent MRS again. PSD patients were evaluated with the Hamilton Depression Scale (HAMD) both before and after treatment with the antidepressant. The mean age of the PSD patients was 70.0+/-4.2 years and that of the controls was 67.2+/-5.4 years. Before treatment, N-acetyl aspartate/creatine (NAA/Cr) ratios in the bilateral hippocampus and thalami were significantly lower in PSD patients than in controls. Choline/creatine (Cho/Cr) ratios were significantly higher in the bilateral hippocampus and left thalamus in PSD patients than in controls. The Cho/Cr ratios were significantly higher in the left thalamus than in the right in PSD patients. The HAMD scores were significantly correlated with the Cho/Cr ratios in the left and right hippocampus. Compared with PSD patients before antidepressant treatment, the PSD subjects after treatment had significantly higher NAA/Cr ratios in the left hippocampus and bilateral thalami. They had significantly lower Cho/Cr ratios in bilateral hippocampus and left thalamus. Our study suggests that metabolic abnormalities in the hippocampus and thalamus are implicated in PSD. Antidepressants may alter the local metabolic abnormalities in these areas.
Collapse
|
41
|
MacMaster F, Vora A, Easter P, Rix C, Rosenberg D. Orbital frontal cortex in treatment-naïve pediatric obsessive-compulsive disorder. Psychiatry Res 2010; 181:97-100. [PMID: 20074911 PMCID: PMC2830852 DOI: 10.1016/j.pscychresns.2009.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/13/2009] [Accepted: 08/28/2009] [Indexed: 11/15/2022]
Abstract
The orbital frontal cortex (OFC) has been implicated in obsessive-compulsive disorder (OCD). Participants comprised 28 treatment-naïve pediatric OCD patients and 21 controls, who were examined using magnetic resonance imaging. OCD patients had larger right but not left OFC white matter volume than controls. This is fresh evidence implicating white matter in OCD.
Collapse
Affiliation(s)
| | | | | | | | - David Rosenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, 9B-UHC, 4201 St. Antoine, Detroit, MI 48201; fax: 313-577-5900, telephone: 313-577-9000, and
| |
Collapse
|
42
|
Arnold PD, Macmaster FP, Hanna GL, Richter MA, Sicard T, Burroughs E, Mirza Y, Easter PC, Rose M, Kennedy JL, Rosenberg DR. Glutamate system genes associated with ventral prefrontal and thalamic volume in pediatric obsessive-compulsive disorder. Brain Imaging Behav 2009; 3:64-76. [PMID: 21031159 PMCID: PMC2964163 DOI: 10.1007/s11682-008-9050-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This pilot study was undertaken to determine if there was a significant association between specific glutamate system genes and regional volumes of interest implicated in the pathogenesis of obsessive-compulsive disorder (OCD). Volumetric magnetic resonance imaging (MRI) and genotyping of 7 polymorphisms in two genes, glutamate receptor, ionotropic, N-methyl-d-aspartate 2B (GRIN2B) and solute linked carrier, family 1, member 1 (SLC1A1) were conducted in 31 psychotropic-naïve pediatric OCD patients. The rs1805476 variant of GRIN2B was associated with left but not right orbital frontal cortex (OFC) (p=0.04) and right but not left anterior cingulate cortex (ACC) volume (p=0.02). The SLC1A1 rs3056 variant was associated with increased total (p=0.01), left (p=0.02) and right (p=0.02) thalamic volume. These results suggest that GRIN2B and SLC1A1 may be associated with regional volumetric alterations in OFC, ACC, and thalamus in children with OCD.
Collapse
Affiliation(s)
- Paul Daniel Arnold
- Program in Genetics and Genomic Biology and Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Huyser C, Veltman DJ, de Haan E, Boer F. Paediatric obsessive-compulsive disorder, a neurodevelopmental disorder? Evidence from neuroimaging. Neurosci Biobehav Rev 2009; 33:818-30. [PMID: 19428494 DOI: 10.1016/j.neubiorev.2009.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To present an overview of neuroimaging data on paediatric obsessive-compulsive disorder (OCD) and discuss implications for further research. METHOD Medline PsycINFO databases and reference lists were searched for relevant articles. All neuroimaging studies up to October 1, 2008 involving children and adolescents with obsessive-compulsive disorder were included. RESULTS Twenty-eight neuroimaging studies using various neuroimaging techniques (CT (2) MRI (15) MRS (8) and SPECT (2) fMRI (2) but no PET or DTI) including a total of 462 paediatric patients were identified. A number of findings indicate a dysfunction of the prefrontal-striatal-thalamic circuit with the involvement of other basal ganglia structures (putamen globus pallidus) and the thalamus in contrast to adult studies which report mainly involvement of the caudate nucleus and orbitofrontal cortex. Several findings point at an aberrant development of the brain in paediatric OCD, patients when compared with healthy controls. CONCLUSION Neuroimaging studies have contributed to our understanding of the neurobiological basis of paediatric OCD. This review provides an agenda for further theory driven research in particular aimed at identifying a critical window of abnormal maturation of prefrontal-striatal-thalamic and limbic circuitry in paediatric OCD patients.
Collapse
Affiliation(s)
- Chaim Huyser
- De Bascule Academic Centre for Child and Adolescent Psychiatry, Duivendrecht, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVE To review progress in understanding pediatric obsessive-compulsive disorder (OCD). The focus is on the frontal-striatal-thalamic model of OCD, neurobiological and genetic studies of the disorder, and their influence on recent advances in treatment. METHOD Computerized literature searches were conducted with the key words "obsessive-compulsive disorder" in conjunction with "pediatric," "genetics," and "imaging." RESULTS Neuroimaging studies find evidence to support the frontal-striatal-thalamic model. Genetic and neurochemical studies also implicate glutamate in the pathological finding of OCD. This has led to the application of glutamate-modulating agents to treat OCD. CONCLUSIONS Studies of pediatric OCD have led to a refined frontal-striatal-thalamic model of pathogenesis and are having an evidence-based impact on treatment. Despite this progress, fully explanatory models are still needed that would allow for accurate prognosis and the development of targeted and efficacious treatments.
Collapse
|
45
|
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) is a non-invasive in vivo method used to quantify metabolites that are relevant to a wide range of brain processes. This paper briefly describes neuroimaging using MRS and provides a systematic review of its application to anxiety disorders. METHOD A literature review was performed in the PubMed, Lilacs and Scielo databases using the keywords spectroscopy and anxiety disorder. References of selected articles were also hand-searched for additional citations. RESULTS Recent studies have shown that there are significant metabolic differences between patients with anxiety disorders and healthy controls in various regions of the brain. Changes were mainly found in N-acetylaspartate, which is associated with neuronal viability, but some of them were also seen in creatine, a substance that is thought to be relatively constant among individuals with different pathological conditions. CONCLUSIONS MRS is a sophisticated neuroimaging technique that has provided useful insights into the biochemical and neurobiological basis of many anxiety disorders. Nevertheless, its utilization in some anxiety disorders is still modest, particularly social phobia and generalised anxiety. Although it is an extremely useful advance in neuroimaging, further research in other brain areas and patient populations is highly advisable.
Collapse
Affiliation(s)
- Clarissa Trzesniak
- 1Department of Neuropsychiatry and Medical Psychology, Ribeirão Preto Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - David Araújo
- 1Department of Neuropsychiatry and Medical Psychology, Ribeirão Preto Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - José Alexandre S Crippa
- 1Department of Neuropsychiatry and Medical Psychology, Ribeirão Preto Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Capizzano AA, Jorge RE, Acion LC, Robinson RG. In vivo proton magnetic resonance spectroscopy in patients with mood disorders: a technically oriented review. J Magn Reson Imaging 2008; 26:1378-89. [PMID: 17968885 DOI: 10.1002/jmri.21144] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proton MR spectroscopy (1HMRS) has been extensively used among mood disorders patients. A review of the published literature in 1HMRS studies of mood disorders was carried out for the period 1991 to July 2006. Of 71 1HMRS studies, 77.5% were done at 1.5T and 66.2% used single voxel sequences (SVS), implying limitations of spectral resolution and anatomic coverage, respectively. In all, 47.9% of studies relied on creatine (Cr) as internal signal standard, although Cr changes were reported in major depression (MD). Most reported metabolic alterations related to mood state affected the left frontal lobe. Depressed adult and pediatric MD patients had reduced glutamate (Glu) in frontal lobe regions, which reversed with successful treatment. A consistent reduction of N-acetyl-aspartate (NAA) was reported in the hippocampal formation among bipolar disorder (BD) patients, along with an increment in frontal Glu. The differences in results of 1HMRS studies in mood disorders reflect heterogeneity of technical factors and subject selection. Future studies should benefit from higher spectral resolution and more extensive anatomic coverage as well as standardized data-processing protocols and subject selection criteria.
Collapse
Affiliation(s)
- Aristides A Capizzano
- Psychiatry Department, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Functional imaging studies have reported with remarkable consistency hyperactivity in the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and caudate nucleus of patients with obsessive-compulsive disorder (OCD). These findings have often been interpreted as evidence that abnormalities in cortico-basal ganglia-thalamo-cortical loops involving the OFC and ACC are causally related to OCD. This interpretation remains controversial, however, because such hyperactivity may represent either a cause or a consequence of the symptoms. This article analyzes the evidence for a causal role of these loops in producing OCD in children and adults. The article first reviews the strong evidence for anatomical abnormalities in these loops in patients with OCD. These findings are not sufficient to establish causality, however, because anatomical alterations may themselves be a consequence rather than a cause of the symptoms. The article then reviews three lines of evidence that, despite their own limitations, permit stronger causal inferences: the development of OCD following brain injury, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection, and neurosurgical lesions that attenuate OCD. Converging evidence from these various lines of research supports a causal role for the cortico-basal ganglia-thalamo-cortical loops that involve the OFC and ACC in the pathogenesis of OCD in children and adults.
Collapse
Affiliation(s)
- Tiago V Maia
- Columbia University and New York State Psychiatric Institute, NY 10032, USA
| | | | | |
Collapse
|
48
|
Gabbay V, Hess DA, Liu S, Babb JS, Klein RG, Gonen O. Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: a proton MR spectroscopy study. Am J Psychiatry 2007; 164:1881-9. [PMID: 18056244 PMCID: PMC2774821 DOI: 10.1176/appi.ajp.2007.06122032] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Proton magnetic resonance spectroscopy ((1)H-MRS) has been increasingly used to examine striatal neurochemistry in adult major depressive disorder. This study extends the use of this modality to pediatric major depression to test the hypothesis that adolescents with major depression have elevated concentrations of striatal choline and creatine and lower concentrations of N-acetylaspartate. METHOD Fourteen adolescents (ages 12-19 years, eight female) who had major depressive disorder for at least 8 weeks and a severity score of 40 or higher on the Children's Depression Rating Scale-Revised and 10 healthy comparison adolescents (six female) group-matched for gender, age, and handedness were enrolled. All underwent three-dimensional 3-T (1)H-MRS at high spatial resolution (0.75-cm(3) voxels). Relative levels of choline, creatine, and N-acetylaspartate in the left and right caudate, putamen, and thalamus were scaled into concentrations using phantom replacement, and levels were compared for the two cohorts. RESULTS Relative to comparison subjects, adolescents with major depressive disorder had significantly elevated concentrations of choline (2.11 mM versus 1.56 mM) and creatine (6.65 mM versus 5.26 mM) in the left caudate. No other neurochemical differences were observed between the groups. CONCLUSIONS These findings most likely reflect accelerated membrane turnover and impaired metabolism in the left caudate. The results are consistent with prior imaging reports of focal and lateralized abnormalities in the caudate in adult major depression.
Collapse
Affiliation(s)
- Vilma Gabbay
- NYU Child Study Center, Department of Psychiatry, New York University School of Medicine, 557 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|