1
|
Marguet SL, Le-Schulte VTQ, Merseburg A, Neu A, Eichler R, Jakovcevski I, Ivanov A, Hanganu-Opatz IL, Bernard C, Morellini F, Isbrandt D. Treatment during a vulnerable developmental period rescues a genetic epilepsy. Nat Med 2015; 21:1436-44. [PMID: 26594844 DOI: 10.1038/nm.3987] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
The nervous system is vulnerable to perturbations during specific developmental periods. Insults during such susceptible time windows can have long-term consequences, including the development of neurological diseases such as epilepsy. Here we report that a pharmacological intervention timed during a vulnerable neonatal period of cortical development prevents pathology in a genetic epilepsy model. By using mice with dysfunctional Kv7 voltage-gated K(+) channels, which are mutated in human neonatal epilepsy syndromes, we demonstrate the safety and efficacy of the sodium-potassium-chloride cotransporter NKCC1 antagonist bumetanide, which was administered during the first two postnatal weeks. In Kv7 current-deficient mice, which normally display epilepsy, hyperactivity and stereotypies as adults, transient bumetanide treatment normalized neonatal in vivo cortical network and hippocampal neuronal activity, prevented structural damage in the hippocampus and restored wild-type adult behavioral phenotypes. Furthermore, bumetanide treatment did not adversely affect control mice. These results suggest that in individuals with disease susceptibility, timing prophylactically safe interventions to specific windows during development may prevent or arrest disease progression.
Collapse
Affiliation(s)
- Stephan Lawrence Marguet
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany.,Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Andrea Merseburg
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany.,Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Neu
- Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronny Eichler
- Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Jakovcevski
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany
| | - Anton Ivanov
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systèmes (INS), Unité Mixte de Recherche (UMR) S1106, Marseille, France
| | - Ileana Livia Hanganu-Opatz
- Developmental Neurophysiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christophe Bernard
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Neurosciences des Systèmes (INS), Unité Mixte de Recherche (UMR) S1106, Marseille, France
| | - Fabio Morellini
- Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Behavioral Biology Unit, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany.,Experimental Neuropediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Kang SK, Johnston MV, Kadam SD. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia. Eur J Neurosci 2015; 42:2792-804. [PMID: 26452067 PMCID: PMC4715496 DOI: 10.1111/ejn.13094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 02/04/2023]
Abstract
Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation.
Collapse
Affiliation(s)
- S K Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
| | - M V Johnston
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, Bozzi Y, Caleo M, Cancedda L. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci 2014; 18:87-96. [PMID: 25485756 PMCID: PMC4338533 DOI: 10.1038/nn.3890] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Hyperpolarizing and inhibitory GABA regulates critical periods for plasticity in sensory cortices. Here we examine the role of early, depolarizing GABA in the control of plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical-period plasticity in visual cortical circuits without affecting the overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, downregulation of brain-derived neurotrophic factor (BDNF) expression and reduced density of extracellular matrix perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and a pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.
Collapse
Affiliation(s)
- Gabriele Deidda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Manuela Allegra
- 1] Scuola Normale Superiore, Pisa, Italy. [2] CNR Neuroscience Institute, Pisa, Italy
| | | | - Shovan Naskar
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Guillaume Bony
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- 1] CNR Neuroscience Institute, Pisa, Italy. [2] Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Laura Cancedda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
4
|
Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure-controlling networks. Neurobiol Dis 2014; 72 Pt B:144-52. [PMID: 24851800 DOI: 10.1016/j.nbd.2014.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022] Open
Abstract
Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks.
Collapse
Affiliation(s)
- Fillippo Sean Giorgi
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa-Pisa University Hospital, I56126 Pisa, Italy.
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
5
|
Abstract
Seizures occur in approximately 1 to 5 per 1000 live births and are among the most common neurologic conditions managed by a neonatal neurocritical care service. There are several, age-specific factors that are particular to the developing brain, which influence excitability and seizure generation, response to medications, and impact of seizures on brain structure and function. Neonatal seizures are often associated with serious underlying brain injury such as hypoxia-ischemia, stroke, or hemorrhage. Conventional, prolonged, continuous video electroencephalogram is the gold standard for detecting seizures, whereas amplitude-integrated EEG is a convenient and useful bedside tool.
Collapse
Affiliation(s)
- Hannah C. Glass
- Departments of Neurology and Pediatrics University of California, San Francisco, United States of America
| |
Collapse
|
6
|
Löscher W, Puskarjov M, Kaila K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 2013; 69:62-74. [PMID: 22705273 DOI: 10.1016/j.neuropharm.2012.05.045] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 12/31/2022]
Abstract
In cortical and hippocampal neurons, cation-chloride cotransporters (CCCs) control the reversal potential (EGABA) of GABAA receptor-mediated current and voltage responses and, consequently, they modulate the efficacy of GABAergic inhibition. Two members of the CCC family, KCC2 (the major neuron-specific K-Cl cotransporter; KCC isoform 2) and NKCC1 (the Na-K-2Cl cotransporter isoform 1 which is expressed in both neurons and glial cells) have attracted much interest in studies on GABAergic signaling under both normal and pathophysiological conditions, such as epilepsy. There is tentative evidence that loop diuretic compounds such as furosemide and bumetanide may have clinically relevant antiepileptic actions, especially when administered in combination with conventional GABA-mimetic drugs such as phenobarbital. Furosemide is a non-selective inhibitor of CCCs while at low concentrations bumetanide is selective for NKCCs. Search for novel antiepileptic drugs (AEDs) is highly motivated especially for the treatment of neonatal seizures which are often resistant to, or even aggravated by conventional AEDs. This review shows that the antiepileptic effects of loop diuretics described in the pertinent literature are based on widely heterogeneous mechanisms ranging from actions on both neuronal NKCC1 and KCC2 to modulation of the brain extracellular volume fraction. A promising strategy for the development of novel CCC-blocking AEDs is based on prodrugs that are activated following their passage across the blood-brain barrier. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | |
Collapse
|
7
|
|