1
|
Naik K, Du Toit LC, Ally N, Choonara YE. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes. Pharmaceutics 2023; 15:566. [PMID: 36839888 PMCID: PMC9961338 DOI: 10.3390/pharmaceutics15020566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The vitreous humour is a gel-like structure that composes the majority of each eye. It functions to provide passage of light, be a viscoelastic dampener, and hold the retina in place. Vitreous liquefaction causes retinal detachment and retinal tears requiring pars plana vitrectomy for vitreous substitution. An ideal vitreous substitute should display similar mechanical, chemical, and rheological properties to the natural vitreous. Currently used vitreous substitutes such as silicone oil, perfluorocarbon liquids, and gases cannot be used long-term due to adverse effects such as poor retention time, cytotoxicity, and cataract formation. Long-term, experimental vitreous substitutes composed of natural, modified and synthetic polymers are currently being studied. This review discusses current long- and short-term vitreous substitutes and the disadvantages of these that have highlighted the need for an ideal vitreous substitute. The review subsequently focuses specifically on currently used polysaccharide- and synthetic polymer-based vitreous substitutes, which may be modified or functionalised, or employed as the derivative, and discusses experimental vitreous substitutes in these classes. The advantages and challenges associated with the use of polymeric substitutes are discussed. Innovative approaches to vitreous substitution, namely a novel foldable capsular vitreous body, are presented, as well as future perspectives related to the advancement of this field.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Wang T, Ran R, Ma Y, Zhang M. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions. Biomed Mater 2021; 16. [PMID: 34038870 DOI: 10.1088/1748-605x/ac058e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
Vitreoretinal surgery is an essential approach to treat proliferative diabetic vitreopathy, retinal detachment, retinal tear, ocular trauma, and macular holes. The removal of the natural vitreous and the replacement with substitutes are critical steps for retina reattachment. Vitreous substitutes including silicone oil (SiO), air, sulfur hexafluoride (SF6), and perfluoropropane (C3F8), have been widely applied in clinical practice. However, these substitutes are reported to cause complications such as emulsification, high intraocular pressure, and lens opacification. Polymeric hydrogels are a kind of material with favorable physical, mechanical properties, and adaptable biocompatibility, thus being highly expected to be ideal vitreous substitutes. Despite years of research, very few polymeric hydrogels can be applied practically in the vitreous cavity. In this review, we focus on the development of polymeric natural-based hydrogels and synthetic hydrogels. Particularly, we pay attention to recent advances in the novel stimuli-response and self-assembly supramolecular hydrogels. Characterized by easy injectability and long residence time, this kind of hydrogel becomes the potentially promising candidates for ideal vitreous substitutes. Finally, we evaluate the current challenges and provide the future directions of vitreous substitutes.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruijin Ran
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Minda Hospital of Hubei Minzu University, Enshi, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
3
|
Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, Chawla R, Hazra S, Mishra NC. Vitreous substitutes: An overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater 2020; 109:1156-1176. [PMID: 33319466 DOI: 10.1002/jbm.b.34778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/27/2020] [Accepted: 11/28/2020] [Indexed: 11/12/2022]
Abstract
Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries. An ideal vitreous substitute could probably be left inside the eye forever. The vitreous humor is transparent, biocompatible, viscoelastic and highly hydrophilic; polymeric hydrogels with these properties can be a potential candidate to be used as vitreous substitutes. To meet the tremendous demand for the vitreous substitute, many scientists all over the world have developed various kinds of vitreous substitutes or tamponade agent. Vitreous substitutes, whatsoever developed till date, are associated with several advantages and disadvantages, and there is no ideal vitreous substitute available till date. This review highlights the polymer-based vitreous substitutes developed so far, along with their advantages and limitations. The gas-based and oil-based substitutes have also been discussed but very briefly.
Collapse
Affiliation(s)
- Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sakchi Bhushan
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Manoj Kumar Yadav
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India
| | - Thirumurthy Velpandian
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Rohan Chawla
- Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Curr Eye Res 2020; 46:429-444. [PMID: 33040616 DOI: 10.1080/02713683.2020.1826977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research on the vitreous humor and development of hydrogel vitreous substitutes have gained a rapid increase in interest within the past two decades. However, the properties of the vitreous humor and vitreous substitutes have yet to be consolidated. In this paper, the mechanical properties of the vitreous humor and hydrogel vitreous substitutes were systematically reviewed. The number of publications on the vitreous humor and vitreous substitutes over the years, as well as their respective testing conditions and testing techniques were analyzed. The mechanical properties of the human vitreous were found to be most similar to the vitreous of pigs and rabbits. The storage and loss moduli of the hydrogel vitreous substitutes developed were found to be orders of magnitude higher in comparison to the native human vitreous. However, the reported modulus for human vitreous, which was most commonly tested in vitro, has been hypothesized to be different in vivo. Future studies should focus on testing the mechanical properties of the vitreous in situ or in vivo. In addition to its mechanical properties, the vitreous humor has other biotransport mechanisms and biochemical functions that establish a redox balance and maintain an oxygen gradient inside the vitreous chamber to protect intraocular tissues from oxidative damage. Biomimetic hydrogel vitreous substitutes have the potential to provide ophthalmologists with additional avenues for treating and controlling vitreoretinal diseases while preventing complications after vitrectomy. Due to the proximity and interconnectedness of the vitreous humor to other ocular tissues, particularly the lens and the retina, more interest has been placed on understanding the properties of the vitreous humor in recent years. A better understanding of the properties of the vitreous humor will aid in improving the design of biomimetic vitreous substitutes and enhancing intravitreal biotransport.
Collapse
Affiliation(s)
- Nguyen K Tram
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Courtney J Maxwell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology & Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Gao QY, Fu Y, Hui YN. Vitreous substitutes: challenges and directions. Int J Ophthalmol 2015; 8:437-40. [PMID: 26085987 DOI: 10.3980/j.issn.2222-3959.2015.03.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/10/2014] [Indexed: 01/07/2023] Open
Abstract
The natural vitreous body has a fine structure and complex functions. The imitation of the natural vitreous body by vitreous substitutes is a challenging work for both researchers and ophthalmologists. Gases, silicone oil, heavy silicone oil and hydrogels, particularly the former two vitreous substitutes are clinically widely used with certain complications. Those, however, are not real artificial vitreous due to lack of structure and function like the natural vitreous body. This article reviews the situations, challenges, and future directions in the development of vitreous substitutes, particularly the experimental and clinical use of a new artificial foldable capsular vitreous body.
Collapse
Affiliation(s)
- Qian-Ying Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yue Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yan-Nian Hui
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|