1
|
Khoshdooz S, Khoshdooz P, Bonyad R, Bonyad A, Sheidaei S, Nosrati R. Cubosomes-based hydrogels; A promising advancement for drug delivery. Int J Pharm 2025; 674:125510. [PMID: 40132766 DOI: 10.1016/j.ijpharm.2025.125510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Hydrogels have so far shown promising opportunities for possible drug delivery applications. Cubosomes (Cub), bicontinuous cubic phase liquid crystals, possess several characteristics that make them appealing as a versatile medium for drug administration. They have been regarded as prospective nanocarriers for drugs, offering a promising alternative to liposomes as a drug delivery method. Cub have the ability to encapsulate lipophilic, hydrophilic, and amphiphilic medicines. Hydrogels have recently shown significant interest in using Cub-based formulations. This paper examines the current advancements in biodegradable Cub-based hydrogels (Cubogel) for intelligent medication delivery to various organs. In conclusion, this paper briefly discusses the prospects and problems of hydrogels based on Cub.
Collapse
Affiliation(s)
- Sara Khoshdooz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Khoshdooz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reihaneh Bonyad
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bonyad
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Demmer W, Schinacher J, Wiggenhauser PS, Giunta RE. Use of Acellular Matrices as Scaffolds in Cartilage Regeneration: A Systematic Review. Adv Wound Care (New Rochelle) 2024; 13:625-638. [PMID: 38775424 DOI: 10.1089/wound.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Significance: Cartilage regeneration remains a significant challenge in the field of regenerative medicine. Acellular matrix (AM)-based cartilage tissue regeneration offers an innovative approach to repairing cartilage defects by providing a scaffold for new tissue growth. Its significance lies in its potential to restore joint function, mitigate pain, and improve the quality of life for patients suffering from cartilage-related injuries and conditions. Recent Advances: Recent advances in AM-based cartilage regeneration have focused on enhancing scaffold properties for improved cell adhesion, proliferation, and differentiation. Moreover, several scaffold techniques such as combining acellular dermal matrix (ADM) and acellular cartilage matrix (ACM) with cartilage tissue, as well as biphasic scaffolding, enjoy rising research activity. Incorporating bioactive factors and advanced manufacturing techniques holds promise for producing more biomimetic scaffolds, advancing efficient cartilage repair and regeneration. Critical Issues: Obstacles in AM-based cartilage regeneration include achieving proper integration with the surrounding tissue and ensuring long-term durability of the regenerated cartilage. Furthermore, issues such as high costs and limited availability of suitable cells for scaffold seeding must be considered. The heterogeneity and limited regenerative capabilities of cartilage need to be addressed for successful clinical translation. Future Directions: Research should focus on exploring advanced biomaterials and developing new techniques, regarding easily reproducible scaffolds, ideally constructed from clinically validated and readily available commercial products. Findings underline the potential of AM-based approaches, especially the rising exploration of tissue-derived ADM and ACM. In future, the primary objective should not only be the regeneration of small cartilage defects but rather focus on fully regenerating a joint or larger cartilage defect.
Collapse
|
3
|
Carton F, Rizzi M, Canciani E, Sieve G, Di Francesco D, Casarella S, Di Nunno L, Boccafoschi F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int J Mol Sci 2024; 25:11426. [PMID: 39518979 PMCID: PMC11545898 DOI: 10.3390/ijms252111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Bioengineered materials represent an innovative option to support the regenerative processes of damaged tissues, with the final objective of creating a functional environment closely mimicking the native tissue. Among the different available biomaterials, hydrogels represent the solution of choice for tissue regeneration, thanks to the easy synthesis process and the highly tunable physical and mechanical properties. Moreover, hydrogels are biocompatible and biodegradable, able to integrate in biological environments and to support cellular interactions in order to restore damaged tissues' functionality. This review offers an overview of the current knowledge concerning hydrogel synthesis and characterization and of the recent achievements in their experimental use in supporting skin, bone, cartilage, and muscle regeneration. The currently available in vitro and in vivo results are of great interest, highlighting the need for carefully designed and controlled preclinical studies and clinical trials to support the transition of these innovative biomaterials from the bench to the bedside.
Collapse
Affiliation(s)
- Flavia Carton
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Manuela Rizzi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Elena Canciani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Gianluca Sieve
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Dalila Di Francesco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Simona Casarella
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| | - Luca Di Nunno
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy (E.C.); (S.C.)
| |
Collapse
|
4
|
Gao S, Nie T, Lin Y, Jiang L, Wang L, Wu J, Jiao Y. 3D printing tissue-engineered scaffolds for auricular reconstruction. Mater Today Bio 2024; 27:101141. [PMID: 39045312 PMCID: PMC11265588 DOI: 10.1016/j.mtbio.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Congenital microtia is the most common cause of auricular defects, with a prevalence of approximately 5.18 per 10,000 individuals. Autologous rib cartilage grafting is the leading treatment modality at this stage of auricular reconstruction currently. However, harvesting rib cartilage may lead to donor site injuries, such as pneumothorax, postoperative pain, chest wall scarring, and deformity. Therefore, in the pursuit of better graft materials, biomaterial scaffolds with great histocompatibility, precise control of morphology, non-invasiveness properties are gradually becoming a new research hotspot in auricular reconstruction. This review collectively presents the exploit and application of 3D printing biomaterial scaffold in auricular reconstruction. Although the tissue-engineered ear still faces challenges before it can be widely applied to patients in clinical settings, and its long-term effects have yet to be evaluated, we aim to provide guidance for future research directions in 3D printing biomaterial scaffold for auricular reconstruction. This will ultimately benefit the translational and clinical application of cartilage tissue engineering and biomaterials in the treatment of auricular defects.
Collapse
Affiliation(s)
- Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Tianqi Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ying Lin
- Department of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), Jinan University, Guangzhou, 510240, China
- Institute of Otolaryngology Head and Neck Surgery, Jinan University, Guangzhou, 510240, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou, 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou, 510620, China
| |
Collapse
|
5
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
7
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
8
|
Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y, Buhler L. Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Front Immunol 2022; 13:869984. [PMID: 35493496 PMCID: PMC9046662 DOI: 10.3389/fimmu.2022.869984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is a promising approach for the treatment of type 1 diabetes (T1D). Currently, clinical islet transplantation is limited by allo - and autoimmunity that may cause partial or complete loss of islet function within a short period of time, and long-term immunosuppression is required to prevent rejection. Encapsulation into semipermeable biomaterials provides a strategy that allows nutrients, oxygen and secreted hormones to diffuse through the membrane while blocking immune cells and the like out of the capsule, allowing long-term graft survival and avoiding long-term use of immunosuppression. In recent years, a variety of engineering strategies have been developed to improve the composition and properties of encapsulation materials and to explore the clinical practicality of islet cell transplantation from different sources. In particular, the encapsulation of porcine islet and the co-encapsulation of islet cells with other by-standing cells or active ingredients for promoting long-term functionality, attracted significant research efforts. Hydrogels have been widely used for cell encapsulation as well as other therapeutic applications including tissue engineering, cell carriers or drug delivery. Here, we review the current status of various hydrogel biomaterials, natural and synthetic, with particular focus on islet transplantation applications. Natural hydrophilic polymers include polysaccharides (starch, cellulose, alginic acid, hyaluronic acid, chitosan) and peptides (collagen, poly-L-lysine, poly-L-glutamic acid). Synthetic hydrophilic polymers include alcohol, acrylic acid and their derivatives [poly (acrylic acid), poly (methacrylic acid), poly(acrylamide)]. By understanding the advantages and disadvantages of materials from different sources and types, appropriate materials and encapsuling methods can be designed and selected as needed to improve the efficacy and duration of islet. Islet capsule transplantation is emerging as a promising future treatment for T1D.
Collapse
Affiliation(s)
- Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Leo Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| |
Collapse
|
9
|
Mammadova A, Gyarmati B, Sárdi K, Paudics A, Varga Z, Szilágyi A. Thiolated cationic poly(aspartamides) with side group dependent gelation properties for the delivery of anionic polyelectrolytes. J Mater Chem B 2022; 10:5946-5957. [DOI: 10.1039/d2tb00674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ gellable polymers have potential applications as injectable formulations in drug delivery and regenerative medicine. Herein, thiolated cationic polyaspartamides were synthesized with two different approaches to correlate side group...
Collapse
|
10
|
Pragya A, Mutalik S, Younas MW, Pang SK, So PK, Wang F, Zheng Z, Noor N. Dynamic cross-linking of an alginate-acrylamide tough hydrogel system: time-resolved in situ mapping of gel self-assembly. RSC Adv 2021; 11:10710-10726. [PMID: 35423570 PMCID: PMC8695775 DOI: 10.1039/d0ra09210j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are a popular class of biomaterial that are used in a number of commercial applications (e.g.; contact lenses, drug delivery, and prophylactics). Alginate-based tough hydrogel systems, interpenetrated with acrylamide, reportedly form both ionic and covalent cross-links, giving rise to their remarkable mechanical properties. In this work, we explore the nature, onset and extent of such hybrid bonding interactions between the complementary networks in a model double-network alginate-acrylamide system, using a host of characterisation techniques (e.g.; FTIR, Raman, UV-vis, and fluorescence spectroscopies), in a time-resolved manner. Further, due to the similarity of bonding effects across many such complementary, interpenetrating hydrogel networks, the broad bonding interactions and mechanisms observed during gelation in this model system, are thought to be commonly replicated across alginate-based and broader double-network hydrogels, where both physical and chemical bonding effects are present. Analytical techniques followed real-time bond formation, environmental changes and re-organisational processes that occurred. Experiments broadly identified two phases of reaction; phase I where covalent interaction and physical entanglements predominate, and; phase II where ionic cross-linking effects are dominant. Contrary to past reports, ionic cross-linking occurred more favourably via mannuronate blocks of the alginate chain, initially. Evolution of such bonding interactions was also correlated with the developing tensile and compressive properties. These structure-property findings provide mechanistic insights and future synthetic intervention routes to manipulate the chemo-physico-mechanical properties of dynamically-forming tough hydrogel structures according to need (i.e.; durability, biocompatibility, adhesion, etc.), allowing expansion to a broader range of more physically and/or environmentally demanding biomaterials applications.
Collapse
Affiliation(s)
- Akanksha Pragya
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Suhas Mutalik
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Muhammad Waseem Younas
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Siu-Kwong Pang
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Pui-Kin So
- The Hong Kong Polytechnic University, University Research Facility in Life Sciences Hung Hom Kowloon Hong Kong SAR China
| | - Faming Wang
- The Hong Kong Polytechnic University, University Research Facility in Life Sciences Hung Hom Kowloon Hong Kong SAR China
- Central South University, School of Architecture and Art Changsha China
| | - Zijian Zheng
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Nuruzzaman Noor
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
11
|
Angiogenic Potential in Biological Hydrogels. Biomedicines 2020; 8:biomedicines8100436. [PMID: 33092064 PMCID: PMC7589931 DOI: 10.3390/biomedicines8100436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are three-dimensional (3D) materials able to absorb and retain water in large amounts while maintaining their structural stability. Due to their considerable biocompatibility and similarity with the body’s tissues, hydrogels are one of the most promising groups of biomaterials. The main application of these hydrogels is in regenerative medicine, in which they allow the formation of an environment suitable for cell differentiation and growth. Deriving from these hydrogels, it is, therefore, possible to obtain bioactive materials that can regenerate tissues. Because vessels guarantee the right amount of oxygen and nutrients but also assure the elimination of waste products, angiogenesis is one of the processes at the base of the regeneration of a tissue. On the other hand, it is a very complex mechanism and the parameters to consider are several. Indeed, the factors and the cells involved in this process are numerous and, for this reason, it has been a challenge to recreate a biomaterial able to adequately sustain the angiogenic process. However, in this review the focal point is the application of natural hydrogels in angiogenesis enhancing and their potential to guide this process.
Collapse
|
12
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:115. [PMID: 31599365 PMCID: PMC6787111 DOI: 10.1007/s10856-019-6318-7] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 05/18/2023]
Abstract
Hydrogels from different materials can be used in biomedical field as an innovative approach in regenerative medicine. Depending on the origin source, hydrogels can be synthetized through chemical and physical methods. Hydrogel can be characterized through several physical parameters, such as size, elastic modulus, swelling and degradation rate. Lately, research is focused on hydrogels derived from biologic materials. These hydrogels can be derived from protein polymers, such as collage, elastin, and polysaccharide polymers like glycosaminoglycans or alginate among others. Introduction of decellularized tissues into hydrogels synthesis displays several advantages compared to natural or synthetic based hydrogels. Preservation of natural molecules such as growth factors, glycans, bioactive cryptic peptides and natural proteins can promote cell growth, function, differentiation, angiogenesis, anti-angiogenesis, antimicrobial effects, and chemotactic effects. Versatility of hydrogels make possible multiple applications and combinations with several molecules on order to obtain the adequate characteristic for each scope. In this context, a lot of molecules such as cross link agents, drugs, grow factors or cells can be used. This review focuses on the recent progress of hydrogels synthesis and applications in order to classify the most recent and relevant matters in biomedical field.
Collapse
Affiliation(s)
- Marta Calvo Catoira
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
- Tissuegraft srl, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy.
| |
Collapse
|