1
|
Yu J, Wang Y, Wei W, Wang X. A review on lipid inclusion in preterm formula: Characteristics, nutritional support, challenges, and future perspectives. Compr Rev Food Sci Food Saf 2025; 24:e70099. [PMID: 39898899 DOI: 10.1111/1541-4337.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.
Collapse
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Marosvölgyi T, Dergez T, Szentpéteri JL, Szabó É, Decsi T. Higher Availability of Long-Chain Monounsaturated Fatty Acids in Preterm than in Full-Term Human Milk. Life (Basel) 2023; 13:life13051205. [PMID: 37240850 DOI: 10.3390/life13051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
While the role of n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs) in the maturation of the infantile nervous system is extensively studied and relatively well-characterized, data on the potential developmental importance of the n-9 long-chain monounsaturated fatty acid (LCMUFA), nervonic acid (NA, C24:1n-9) are scarce and ambiguous. Therefore, the aim of the present study was to reanalyze our available data on the contribution of NA and its LCMUFA precursors, gondoic acid (C20:1n-9) and erucic acid (EA, C22:1n-9) to the fatty acid composition of human milk (HM) during the first month of lactation in mothers of both preterm (PT) and full-term (FT) infants. HM samples were obtained daily during the first week of lactation, and then on the 14th, 21st, and 28th days. Values of the LCMUFAs, C20:1n-9, EA, and NA were significantly higher in colostrum than in transient and mature HM. Consequently, there were highly significant inverse associations between LCMUFA values and the duration of lactation. Moreover, C20:1n-9, EA, and NA values were monotonously, considerably, and at many timepoints significantly higher in PT than in FT HM samples. By the 28th day of lactation, summarized LCMUFA values in PT HM samples declined to the level measured in FT HM samples on the first day of lactation; however, EA and NA values were still significantly higher in PT than in FT HM on the 28th day. Significantly higher availability of LCMUFAs in PT than in FT HM underpins the potential biological role of this hitherto somewhat neglected group of fatty acids.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Timea Dergez
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - József L Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Medical School, University of Pécs, 7623 Pécs, Hungary
| |
Collapse
|
3
|
Zhang Z, Wang Y, Yang X, Cheng Y, Zhang H, Xu X, Zhou J, Chen H, Su M, Yang Y, Su Y. Human Milk Lipid Profiles around the World: A Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:2519-2536. [PMID: 36083999 PMCID: PMC9776668 DOI: 10.1093/advances/nmac097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/08/2022] [Accepted: 09/01/2022] [Indexed: 01/29/2023] Open
Abstract
Reported breast milk lipid concentrations may vary with geographical region, postnatal age, and year of sample collection. In this review, we summarized data on the concentrations of total fat, total phospholipids, cholesterol, and fatty acids in human milk worldwide and their variation according to lactation stage, study area, and sample collection year. A systematic literature search was performed using the PubMed, Embase, Web of Science, and Medline databases for English-language papers and Wanfang and China National Knowledge Infrastructure databases for Chinese-language papers. A total of 186 studies evaluating the human milk lipid profiles were included. According to random-effects models based on worldwide data, the summarized means (95% CIs) as percentages of total fat were 42.2% (41.1%, 43.3%) for SFAs, 36.6% (35.6%, 37.5%) for MUFAs, and 21.0% (19.3%, 22.7%) for PUFAs. However, the study heterogeneity was high for most types of fatty acids (I2 > 99%). Human milk from Western countries had higher concentrations of MUFAs and 18:1n-9 (ω-9), but lower concentrations of PUFAs, 18:2n-6, 20:4n-6, 18:3n-3, 20:5n-3, 22:6n-3, and total n-6 PUFA compared with those from non-Western countries (P < 0.001-0.011). Significant lactation stage differences were observed for total fat and some individual fatty acids. The concentrations of SFAs and 16:0 were significantly negatively correlated with sampling year (P < 0.001-0.028). In contrast, a significant positive correlation between the concentrations of 18:2n-6 and 18:3n-3 and sampling year was observed (P < 0.001-0.035). Our results suggest that the pooling of data on human milk lipid profiles in different studies should be done with caution due to the high between-study heterogeneity. The concentration of lipids, including total fat, cholesterol, and specific fatty acids, differs in human milk according to lactation stage, geographical region, and year of sample collection.
Collapse
Affiliation(s)
- Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingyao Wang
- Chinese Nutrition Society, Beijing, China,CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute), Beijing, China
| | - Xiaoguang Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiyong Cheng
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| | - Jin Zhou
- CNS Academy of Nutrition and Health (Beijing Zhongyinghui Nutrition and Health Research Institute), Beijing, China
| | - Hengying Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengyang Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | | | | |
Collapse
|
4
|
Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102023. [PMID: 31699594 DOI: 10.1016/j.plefa.2019.102023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lipids in human milk (HM) provide the majority of energy for developing infants, as well as crucial essential fatty acids (FA). The FA composition of HM is highly variable and influenced by multiple factors. We sought to increase understanding of the variation in HMFA profiles and their development over the course of lactation, and after term and preterm delivery, using a pooled data analysis. OBJECTIVE To review the literature and perform a pooled data analysis to qualitatively describe an extensive FA profile (36 FAs) in term and preterm colostrum, transitional - and mature milk up to 60 days postpartum. DESIGN A Medline search was conducted for HMFA profile data following term or preterm delivery. The search was confined to English language papers published between January 1980 and August 2018. Studies reporting original data, extensive FA profiles in HM from healthy mothers were included. Weighted least squares (WLS) means were calculated from the pooled data using random or fixed effect models. RESULTS Our pooled data analysis included data from 55 studies worldwide, for a total of 4374 term milk samples and 1017 preterm milk samples, providing WLS means for 36 FAs. Patterns in both term and preterm milk were apparent throughout lactation for some FAs: The most abundant FAs (palmitic, linoleic and oleic acid) remained stable over time, whereas several long-chain polyunsaturated FAs (including ARA and DHA) seemed to decrease and short- and medium-chain FAs increased over time. CONCLUSIONS High heterogeneity between individual studies was observed for the reported levels of some FAs, whereas other FAs were remarkably consistent between studies. Our pooled data suggests that specific FA categories fluctuate according to distinct patterns over the course of lactation; many of these patterns are comparable between term and preterm milk.
Collapse
Affiliation(s)
- L M Floris
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| | - B Stahl
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | | | - I C Teller
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
5
|
Abstract
The aim of this study was to determine the fatty acid (FA) composition of breast milk, and its association with mothers' FA intake. Milk samples were obtained from 238 healthy lactating women who volunteered to participate in the Human Milk Micronutrients Analysis Research. Dietary intake during lactation was assessed using a 3-d food record, and fat content and FA composition of the breast milk samples were analysed by IR spectrometry using MilkoScan FT2 and GC flame ionisation detector, respectively. The fat content was 3·31 (sd 1·41) g/100 ml breast milk. The concentrations of arachidonic acid (20 : 4 n-6), EPA (20 : 5 n-3) and DHA (22 : 6 n-3) in breast milk were 0·48 (sd 0·13), 0·15 (sd 0·12) and 0·67 (sd 0·47) % of total FA, respectively. Fat content and FA composition of breast milk were associated with maternal age, BMI, supplement use and infant age. Dietary intakes of EPA, DHA, n-3 FA, n-6 FA, SFA and PUFA were positively correlated with the corresponding FA in the milk samples. FA levels in breast milk and maternal diet are highly correlated. Further studies are warranted to explore factors that may be associated with changes in FA composition in human milk.
Collapse
|
6
|
Li J, Yin H, Bibus DM, Byelashov OA. The role of Omega-3 docosapentaenoic acid in pregnancy and early development. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Juan Li
- Omega Protein Corporation; Houston; TX USA
| | | | - Douglas M. Bibus
- University of Minnesota; Minneapolis; MN USA
- Lipid Technologies; LLC.; Austin MN USA
| | | |
Collapse
|
7
|
Changes in the Immune Components of Preterm Human Milk and Associations With Maternal and Infant Characteristics. J Obstet Gynecol Neonatal Nurs 2016; 45:639-48. [PMID: 27477269 DOI: 10.1016/j.jogn.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To describe difference in cytokines, chemokines, and growth factors (CCGFs) and secretory immunoglobulin A (sIgA) in the breast milk of mothers who gave birth preterm and maternal or infant characteristics related to these immune components. DESIGN A prospective, repeated-measures, one-group design. SETTING Data were collected at an 82-bed NICU in West Central Florida. PARTICIPANTS Seventy-six very-low-birth-weight infants weighing less than 1,500 g and their mothers. METHODS Daily aliquots of breast milk from mothers of preterm infants were collected from the daily infants' feedings and pooled at the end of each week, and CCGFs and sIgA were measured weekly with MagPix multiplexing (Luminex, Austin, TX) and enzyme-linked immunosorbent assay. RESULTS The CCGFs showed high individual variability, but the levels of most CCGFs and sIgA fell over time. Immune variables were generally greater in milk from mothers of infants smaller than 1,000 g. The breast milk of mothers of male preterm infants had significantly greater sIgA than the breast milk of mothers of female preterm infants. We found relationships between age, body mass index, parity, sIgA, and some of the CCGFs in the breast milk of women who gave birth preterm. CONCLUSION Immune molecules declined in concentration over time in the breast milk of mothers who give birth preterm during the NICU stay, and maternal and infant factors appeared to play some role in the levels of these immune molecules. Further exploration of this relationship is warranted.
Collapse
|
8
|
Groer M, Duffy A, Morse S, Kane B, Zaritt J, Roberts S, Ashmeade T. Cytokines, Chemokines, and Growth Factors in Banked Human Donor Milk for Preterm Infants. J Hum Lact 2014; 30:317-323. [PMID: 24663954 PMCID: PMC4175293 DOI: 10.1177/0890334414527795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND There has been a recent increase in availability of banked donor milk for feeding of preterm infants. This milk is pooled from donations to milk banks from carefully screened lactating women. The milk is then pasteurized by the Holder method to remove all microbes. The processed milk is frozen, banked, and sold to neonatal intensive care units (NICUs). The nutrient bioavailability of banked donor milk has been described, but little is known about preservation of immune components such as cytokines, chemokines, and growth factors (CCGF). OBJECTIVE The objective was to compare CCGF in banked donor milk with mother's own milk (MOM). METHODS Aliquots (0.5 mL) were collected daily from MOM pumped by 45 mothers of NICU-admitted infants weighing < 1500 grams at birth. All daily aliquots of each mother's milk were pooled each week during 6 weeks of an infant's NICU stay or for as long as the mother provided MOM. The weekly pooled milk was measured for a panel of CCGF through multiplexing using magnetic beads and a MAGPIX instrument. Banked donor milk samples (n = 25) were handled and measured in the same way as MOM. RESULTS Multiplex analysis revealed that there were levels of CCGF in banked donor milk samples comparable to values obtained from MOM after 6 weeks of lactation. CONCLUSION These data suggest that many important CCGF are not destroyed by Holder pasteurization.
Collapse
Affiliation(s)
- Maureen Groer
- University of South Florida College of Nursing, Tampa, FL, USA
| | - Allyson Duffy
- University of South Florida College of Nursing, Tampa, FL, USA
| | - Shannon Morse
- University of South Florida College of Nursing, Tampa, FL, USA
| | - Bradley Kane
- University of South Florida College of Nursing, Tampa, FL, USA
| | - Judy Zaritt
- University of South Florida College of Medicine, Tampa, FL, USA
| | - Shari Roberts
- University of South Florida College of Medicine, Tampa, FL, USA
| | - Terri Ashmeade
- University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|